
Turn over     

Paper
reference

 

You must have:
•	 a computer workstation with appropriate programming language code 

editing software and tools, including an IDE that you are familiar with that 
shows line numbers

•	 a ‘STUDENT CODING’ folder containing code and data files
•	 printed and electronic copies of the Program Language Subset (PLS) 

document.

Pearson Edexcel Level 1/Level 2 GCSE (9–1)

1CP2/02Time 2 hours

Computer Science
PAPER 2: Application of Computational Thinking

Instructions

•	Answer all questions on your computer.
•	Save the new or amended code using the file name provided and place it in the 

‘COMPLETED CODING’ folder.
•	You must not use the internet at any time during the examination.

Information

•	The ‘STUDENT CODING’ folder in your user area includes all the code and data 
files you need.

•	The total mark for this paper is 75.
•	The marks for each question are shown in brackets.

Advice

•	Read each question carefully before you start to answer it.
•	Save your work regularly.
•	Check your answers and work if you have time at the end.

*P71103A0108*P71103A
©2022 Pearson Education Ltd.

Q:1/1/1/1/



*P71103A0208*
2

	

	

  

Answer ALL questions.

Suggested time: 15 minutes

1	 A program is required to convert numbers entered by the user to their alphabetic 
equivalent. Only numbers from 5 to 30 are valid.

	 Adding 60 to the number and then applying the function chr() generates the 
equivalent ASCII code for an uppercase letter. 

	 The table shows accurate test data for a functional program.

Input Output

4 Invalid input

5 5 is equal to A

22 22 is equal to R

30 30 is equal to Z

31 Invalid input

	 Open file Q01.py

	 Amend the code to:

•	 create an integer variable named num and set it to 0 

•	 take the input from the user and convert it to an integer

•	 check that the inputted number is between 5 and 30

•	 add 60 to the variable num and assign the result to the variable decimalCode

•	 join strings together with concatenation

•	 display an error message.

	 Do not add any additional functionality.

	 Save your amended code file as Q01FINISHED.py

(Total for Question 1 = 10 marks)



*P71103A0308* Turn over     

3

	

	

  

Suggested time: 15 minutes

2	 A program uses turtle graphics to draw a simple 
image. This is the image that must be produced.

	 Both the circle and the outside square are centred 
on the horizontal and vertical grid lines. The outside 
square is 400 × 400. The circle is 200 across. The circle 
outline is coloured gold. All other lines are black.

	 The program has errors and does not work correctly.

	 Open file Q02.py

	 Amend the code to:

•	 add a comment to identify the data type of the argument to the  
turtle.mode () subprogram call on original line 19 
	 turtle.mode ("standard")

•	 fix the NameError on original line 23 
	 screen.setup (WIDTH, HIGHT)

•	 fix the AttributeError on original line 28 
	 theTurtle = turtle.turtle ()

•	 fix the TypeError on original line 36 
	 theTurtle.pendown (200)

•	 fix the logic error that causes the vertical axis to be too far right on 
original line 42 
	 theTurtle.setpos (100, 200)

•	 fix the logic error that causes the vertical axis to be drawn too short on 
original line 48 
	 theTurtle.forward (100)

•	 fix the logic error that causes the outside square to tilt left of the vertical axis 
on original line 56 
	 theTurtle.setheading (95)

•	 add a line to set the size of the pen to the constant BIG on original line 68

•	 add a line to set the colour of the pen to gold on original line 71

•	 add a line to hide the turtle on original line 78.

	 Do not change the functionality of the given lines of code.

	 Do not add any additional functionality.

	 Save your amended code file as Q02FINISHED.py

(Total for Question 2 = 10 marks)



*P71103A0408*
4

	

	

  

Suggested time: 20 minutes

3	 A circle is cut out of a square of card. A program is needed 
to calculate the area of the excess card. The image shows 
the excess card in light grey.

	 The required formulae are:

area of a square = s2

diameter of a circle = 2r

area of a circle = πr  2

•	 s is the length of a single side of the square

•	 r is the radius of the circle, the distance from the centre to the edge

		  •	 π is the constant Pi.

	 The table shows accurate test results for two sets of inputs.

Input
Output

Length of side Radius of circle

12 8 Invalid input

10 4 49.73451754256331

	 The program has these requirements:

•	 the length of the square’s side is an integer 

•	 the radius of the circle is an integer 

•	 the user inputs both the length of a side and the radius  
(no validation required)

•	 the diameter of the circle must be the same size or smaller than the side 
of the square

•	 the variables supplied in the code file must be used.

	 Open file Q03.py

	 Amend the code to meet the requirements.

	 Do not change the functionality of the given lines of code.



*P71103A0508* Turn over     

5

	

	

  

	 Do not add any additional functionality.

	 Save your amended code file as Q03FINISHED.py

(Total for Question 3 = 10 marks)



*P71103A0608*
6

	

	

  

Suggested time: 20 minutes

4	 A program converts a binary pattern to a positive denary integer. The user enters the 
binary pattern. The program loops continually until the user inputs an empty pattern 
to stop the program.

	 A multiplier doubles for each position from right to left, to generate the place values 
for the binary pattern, i.e. 128, 64, 32, 16, 8, 4, 2, 1. When a 1 appears in the pattern, 
the place value is added to the running total. When a 0 appears in the pattern, 
nothing is added to the running total.

	 The table shows accurate test results for three inputs.

Input Output

1100 12

10101010 170

<empty> Exits program

	 The lines of code in the program are mixed up. The indentation has been done 
for you.

	 Open file Q04.py

	 Amend the code to make the program work and produce the correct output. You will 
need to rearrange the lines.

	 Do not change the functionality of the given lines of code.

	 Do not add any additional functionality.

	 Save your amended code as Q04FINISHED.py

(Total for Question 4 = 15 marks)



*P71103A0708* Turn over     

7

	

	

  

Suggested time: 20 minutes

5	 A program uses a one-dimensional data structure to record the number of kilograms 
of coffee used each day by the local cafe. The data needs to be saved to a file. 
Each line of the file represents one week’s worth of coffee consumption.

	 Open file Q05.py

	 Write a program to meet these requirements:

•	 create a comma-separated value text file named Q05_OUTPUT.TXT

•	 write lines to the file, each holding seven weights

•	 process all the weights in the data structure.

	 Here is the expected output file.

    

3.79,4.16,1.52,3.66,2.58,4.98,4.37
2.95,2.58,4.37,4.59,2.61,6.13,4.49
1.66,2.65,4.64,4.72,3.59,4.56,4.23
2.15,4.03,2.47,4.61,4.55,6.31,5.81
2.63,3.61,3.49,4.49,3.02,3.86,6.26
3.11,1.79,2.62,2.23,2.34,5.66,4.58
3.52,1.53,2.07,3.89,3.48,5.52,6.38
3.77,1.74,1.78,3.87,3.45,3.79,3.36
1.87,2.12,2.09,2.84,2.29,4.46,3.63

	 Do not add any additional functionality.

	 Use comments, white space, indentation and layout to make the program easier to 
read and understand.

	 Save your amended code as Q05FINISHED.py

(Total for Question 5 = 15 marks)



*P71103A0808*
8

	

  

Suggested time: 30 minutes

6	 In a board game, users build words from letter tiles.  Each letter tile has a points value. 
There are 107 valid two-letter words.

	 A program is required to check that each two-letter word placed on the board is valid.

	 Each valid two-letter word with its points value is stored as a record in the  
two-dimensional list, wordTable.  The records are stored in alphabetical order.  

	 Open file Q06.py

	 Write a program to meet these requirements:

		  Inputs

•	 prompt for and accept a two-letter word from the user, AA to ZZ, inclusive

•	 accept uppercase and lowercase input

•	 no other validation is required.

		  Process

•	 create a linear search to locate the word in wordTable 

•	 stop the search when:

				    •	 the word is located

				    •	 the expected location of the user’s word is passed

				    •	 the end of the list is reached after all words have been checked

•	 ensure the search works for any length of wordTable 

		  Outputs

•	 when the user’s word is located, inform the user of the word and the number 
of points it scores

•	 when the expected location of the user’s word is passed, suggest the next 
word and the number of points it scores

•	 when the end of the list is reached after all words have been checked, suggest 
the last word in the list and the number of points it scores.

	 Use comments, white space and layout to make the program easier to read 
and understand.

	 Do not add any additional functionality.

	 Save your amended code as Q06FINISHED.py

(Total for Question 6 = 15 marks)

TOTAL FOR PAPER = 75 MARKS



Turn over     

Paper
reference

*P71103A*P71103A
©2022 Pearson Education Ltd.

1/1/1/1

PLS Booklet
Do not return this booklet with the question paper.

Computer Science
PAPER 2: Application of Computational Thinking
Programming Language Subset
Version 2

Time 2 hours

Pearson Edexcel Level 1/Level 2 GCSE (9–1)

1CP2/02



2
P71103A

Contents

Introduction................................................................................................................................................................................. 4

Comments.................................................................................................................................................................................... 5

Identifiers...................................................................................................................................................................................... 5

Data types and conversion..................................................................................................................................................... 5

	 Primitive data types........................................................................................................................................................... 5

	 Conversion............................................................................................................................................................................ 5

	 Constants............................................................................................................................................................................... 5

	 Combining declaration and initialisation.................................................................................................................. 5

	 Structured data types....................................................................................................................................................... 5

	 Dimensions........................................................................................................................................................................... 5

Operators...................................................................................................................................................................................... 6

	 Arithmetic operators......................................................................................................................................................... 6

	 Relational operators........................................................................................................................................................... 6

	 Logical/Boolean operators.............................................................................................................................................. 6

Programming constructs......................................................................................................................................................... 7

	 Assignment........................................................................................................................................................................... 7

	 Sequence............................................................................................................................................................................... 7

	 Blocking.................................................................................................................................................................................. 7

	 Selection................................................................................................................................................................................ 7

	 Repetition.............................................................................................................................................................................. 7

	 Iteration.................................................................................................................................................................................. 7

	 Subprograms........................................................................................................................................................................ 8

Inputs and outputs.................................................................................................................................................................... 8

	 Screen and keyboard......................................................................................................................................................... 8

	 Files.......................................................................................................................................................................................... 8

Supported subprograms......................................................................................................................................................... 9

	 Built-in subprograms......................................................................................................................................................... 9

	 List subprograms................................................................................................................................................................ 9

	 String subprograms.........................................................................................................................................................10

		  Formatting strings....................................................................................................................................................10



3

Turn over     
P71103A

Library modules........................................................................................................................................................................11

	 Random library module.................................................................................................................................................11

	 Math library module........................................................................................................................................................11

	 Time library module........................................................................................................................................................11

	 Turtle graphics library module....................................................................................................................................12

		  Tips for using turtle..................................................................................................................................................12

		  Turtle window and drawing canvas...................................................................................................................12

		  Turtle creation, visibility and movement..........................................................................................................13

		  Turtle positioning and direction..........................................................................................................................13

		  Turtle filling shapes..................................................................................................................................................13

		  Turtle controlling the pen......................................................................................................................................14

		  Turtle circles................................................................................................................................................................14

		  Turtle colours..............................................................................................................................................................14

Console session.........................................................................................................................................................................14

Code style...................................................................................................................................................................................14

Line continuation.....................................................................................................................................................................15

Carriage return and line feed...............................................................................................................................................15



4
P71103A

Introduction

The Programming Language Subset (PLS) is a document that specifies which parts of Python 3 are 
required in order that the assessments can be undertaken with confidence.  Students familiar with 
everything in this document will be able to access all parts of the Paper 2 assessment. This does not 
stop a teacher/student from going beyond the scope of the PLS into techniques and approaches that 
they may consider to be more efficient or engaging.

Pearson will not go beyond the scope of the PLS when setting assessment tasks. Any student 
successfully using more esoteric or complex constructs or approaches not included in this document 
will still be awarded marks in Paper 2 if the solution is valid.



5

Turn over     
P71103A

The pair of <> symbols indicate where expressions or values need to be supplied.  They are not part 
of the PLS.

Comments

Anything on a line after the character # is considered a comment.

Identifiers

Identifiers are any sequence of letters, digits and underscores, starting with a letter.

Both upper and lower case are supported.

Data types and conversion

Primitive data types

Variables may be explicitly assigned a data type during declaration.

Variables may be implicitly assigned a data type during initialisation.

Supported data types are:

Data type PLS
integer int

real float
Boolean bool

character str

Conversion

Conversion is used to transform the data types of the contents of a variable using int(), str(), float(), 
bool() or list(). Conversion between any allowable types is permitted.

Constants

Constants are conventionally named in all uppercase characters.

Combining declaration and initialisation

The data type of a variable is implied when a variable is assigned a value.

Structured data types

A structured data type is a sequence of items, which themselves are typed. Sequences start with an 
index of zero.

Data type Explanation PLS
string A sequence of characters str
array A sequence of items with the same (homogeneous) data type list
record A sequence of items, usually of mixed (heterogenous) data types list

Dimensions

The number of dimensions supported by the PLS is two.

The PLS does not support ragged data structures. Therefore, in a list of records, each record will have 
the same number of fields.



6
P71103A

Operators

Arithmetic operators

Arithmetic operator Meaning

/ division

* multiplication

** exponentiation

+ addition

- subtraction

// integer division

% modulus

Relational operators

Logical operator Meaning

== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Logical/Boolean operators

Operator Meaning

and both sides of the test must be true to return true

or either side of the test must be true to return true

not inverts



7

Turn over     
P71103A

Programming constructs

Assignment

Assignment is used to set or change the value of a variable.

<variable identifier> = <value>

<variable identifier> = <expression>

Sequence

Every instruction comes one after the other, from the top of the file to the bottom of the file.

Blocking

Blocking of code segments is indicated by indentation and subprogram calls. These determine the 
scope and extent of variables they declare.

Selection

if <expression>:
	 <command>

If <expression> is true, then command is executed.

if <expression>: 
	 <command>
else:
	 <command>

If <expression> is true, then first <command> is 
executed, otherwise second <command> is executed.

if <expression>:
	 <command>
elif <expression>:
	 <command>
else:
	 <command>

If <expression> is true, then first <command> is 
executed, otherwise the second <expression> test is 
checked. If true, then second <command> is executed, 
otherwise third <command> is executed.

Supports multiple instances of ‘elif’.

The ‘else’ is optional with the ‘elif’.

Repetition

while <condition>:
	 <command>

Pre-conditioned loop. This executes <command> while 
<condition> is true.

Iteration

for <id> in <structure>:
	 <command>

Executes <command> for each element of a 
data structure, in one dimension

for <id> in range (<start>, <stop>):
	 <command>

Count-controlled loop. Executes <command> a 
fixed number of times, based on the numbers 
generated by the range function

for �<id> in range (<start>, <stop>, 
<step>):

	 <command>

Same as above, except that <step> influences 
the numbers generated by the range function



8
P71103A

Subprograms

def <procname> ():
	 <command>

A procedure with no parameters

def <procname> (<paramA>, <paramB>):
	 <command>

A procedure with parameters

def <funcname> ():
	 <command>
	 return (<value>)

A function with no parameters

def <funcname> (<paramA>, <paramB>):
	 <command>
	 return (<value>)

A function with parameters

Inputs and outputs

Screen and keyboard

print (<item>) Displays <item> on the screen

input (<prompt>) Displays <prompt> on the screen and 
returns the line typed in

Files

The PLS supports manipulation of comma separated value text files.

File operations include open, close, read, write and append.

<fileid> = open (<filename>, "r") Opens file for reading

for <line> in <fileid>: Reads every line, one at a time

<alist> = <fileid>.readlines () Returns a list where each item is a line 
from the file

<aline> = <fileid>.readline () Returns a line from a file. Returns an 
empty string on the end of the file

<fileid> = open (<filename>, "w") Opens a file for writing

<fileid> = open (<filename>, "a") Opens a file for appending

<fileid>.writelines (<structure>) Writes <structure> to a file. <structure> is 
a list of strings

<fileid>.write (<aString>) Writes a single string to a file

<fileid>.close () Closes file



9

Turn over     
P71103A

Supported subprograms

Built-in subprograms

The PLS supports these built-in subprograms.

Subprogram Description

chr (<integer>) Returns the string which matches the Unicode 
value of <integer>

input (<prompt>) Displays the content of prompt to the screen 
and waits for the user to type in characters 
followed by a new line

len (<object>) Returns the length of the <object>, such as a 
string, one-dimensional or two-dimensional 
data structure

ord (<char>) Returns the integer equivalent to the Unicode 
string of the single character <char>

print (<item>) Prints <item> to the display

range (<start>, <stop>, <step>) Generates a list of numbers using <step>, 
beginning with <start> and up to, but not 
including, <stop>.  A negative value for <step> 
goes backwards

round (<x>, <n>) Rounds <x> to the number of <n> digits after 
the decimal (uses the 0.5 rule)

List subprograms

The PLS supports these list subprograms.

Subprogram Description

<list>.append (<item>) Adds <item> to the end of the list

del <list>[<index>] Removes the item at <index> from list

<list>.insert (<index>, <item>) Inserts <item> just before an existing one 
at <index>

<aList> = list ()
<aList> = []

Two methods of creating a list structure.
Both are empty



10
P71103A

String subprograms

The PLS supports these string subprograms.

Subprogram Description
len (<string>) Returns the length of <string>
<string>.find (<substring>) Returns the location of <substring> in the original 

<string>. Returns -1, if not found
<string>.index (<substring>) Returns the location of <substring> in the original 

<string>. Raises an exception if not found
<string>.isalpha () Returns True, if all characters are alphabetic, A–Z
<string>.isalnum () Returns True, if all characters are alphabetic, A–Z and 

digits (0–9)
<string>.isdigit () Returns True, if all characters are digits (0–9), 

exponents are digits
<string>.replace (<s1>, <s2>) Returns original string with all occurrences of <s1> 

replaced with <s2>
<string>.split (<char>) Returns a list of all substrings in the original, using 

<char> as the separator
<string>.strip (<char>) Returns original string with all occurrences of <char> 

removed from the front and back
<string>.upper () Returns the original string in uppercase
<string>.lower () Returns the original string in lowercase
<string>.isupper () Returns True, if all characters are uppercase
<string>.islower () Returns True, if all characters are lowercase
<string>.format (<placeholders>) Formats values and puts them into the <placeholders>

Formatting strings

Output can be customised to suit the problem requirements and the user’s needs by forming string 
output.

<string>.format () can be used with positional placeholders and format descriptors.

Here is an example:

layout = "{:>10} {:^5d} {:7.4f}" 
print (layout.format ("Fred", 358, 3.14159))

Category Description
Numbers Decimal integer (d), Fixed point (f )
Alignment Left (<), Right (>), Centre (^)
Field size The total width of a field, regardless of how many columns are occupied

The * can be used to generate a line of repeated characters, for example "=" * 10, will generate 
"==========".

Concatenation of strings is done using the + operator.

String slicing is supported. myName[0:2] gives the first two characters in the variable myName.



11

Turn over     
P71103A

Library modules

The functionality of a library module can only be accessed once the library module is imported into 
the program code.

Statement Description

import <library> Imports the <library> module into the current program

Random library module

The PLS supports these random library module subprograms.

Subprogram Description

random.randint (<a>, <b>) Returns a random integer X so that <a> <= X <= <b>

random.random () Returns a float number in the range of 0.0 and 1.0

Math library module

The PLS supports these math library module subprograms and constant.

Subprogram or constant Description

math.ceil (<r>) Returns the smallest integer not less than <r>

math.floor (<r>) Returns the largest integer not greater than <r>

math.sqrt (<x>) Returns the square root of <x>

math.pi The constant Pi (Π)

Time library module

The PLS supports this time library module subprogram.

Subprogram Description

time.sleep (<sec>) The current process is suspended for the given number of 
seconds, then resumes at the next line of the program



12
P71103A

Turtle graphics library module

Tips for using turtle

The default mode for the PLS turtle is “standard”.  This means that when a turtle is created, it initially 
points to the right (east) and angles are counterclockwise.  You can change modes using  
turtle.mode ().

The turtle window is one size and the turtle drawing canvas (inside the window) can be a different 
size.  To make the turtle window bigger, a screen needs to be created and setup.  Here is an example:

WIDTH = 800
HEIGHT = 400
screen = turtle.Screen ()
screen.setup (WIDTH, HEIGHT)

To make the drawing canvas bigger use <turtle>.screensize ().

In some development environments, the turtle window will close as soon as the program completes. 
There are two ways to keep it open:

•	 Add turtle.done () as the last line in the code file. This will keep the window open 
until closed with the exit cross in the upper right-hand corner.  It also allows scrollbars 
on the window.

•	 Add a line asking for keyboard input, such as input(), as the last line. This will 
keep the window open until the user presses a key in the console session.  The scrollbars 
will not work.

Turtle window and drawing canvas

The PLS supports these turtle library module subprograms to control the window and drawing 
canvas.  Notice that these subprograms do not use the name of the turtle you create to the left of the 
dot, but the library name, “turtle” or a <window> variable.

Subprogram Description

<window>.setup (<width>, <height>) Sets the size of the turtle window to <width>  
x <height> in pixels.  Requires use of  
turtle.Screen () to create <window> first

turtle.done () Use as the last line of the file to keep the turtle 
window open until it is closed using the exit 
cross in the upper right-hand corner of the 
window

turtle.mode (<type>) <type> is one of the strings “standard” or “logo”.  
A turtle in standard mode, initially points to the 
right (east) and angles are counterclockwise.  A 
turtle in logo mode, initially points up (north) 
and angles are clockwise

turtle.Screen () Returns a variable to address the turtle 
window.  Use with <window>.setup()

turtle.screensize (<width>, <height>) Makes the scrollable drawing canvas size equal 
to <width> x <height> in pixels.  Note, use 
with turtle.done () so scrollbars will be active



13

Turn over     
P71103A

Turtle creation, visibility and movement

The PLS supports these turtle library module subprograms to control the turtle creation, visibility 
and movement.

Subprogram Description

<turtle> = turtle.Turtle () Creates a new turtle with the variable name <turtle>

<turtle>.back (<steps>) Moves backward (opposite-facing direction) for 
number of <steps>

<turtle>.forward (<steps>) Moves forward (facing direction) for number of 
<steps>

<turtle>.hideturtle () Makes the <turtle> invisible

<turtle>.left (<degrees>) Turns anticlockwise the number of <degrees>

<turtle>.right (<degrees>) Turns clockwise the number of <degrees>

<turtle>.showturtle () Makes the turtle visible

<turtle>.speed (<value>) The <value> can be set to “fastest”, “fast”, “normal”, 
“slow”, “slowest”.  Alternatively, use the numbers 1 to 10 
to increase speed.  The value of 0 is the fastest

Turtle positioning and direction

The PLS supports these turtle library module subprograms to control the positioning and direction.

Subprogram Description

<turtle>.home () Moves to canvas origin (0, 0)

<turtle>.reset () Clears the drawing canvas, sends the turtle home and 
resets variables to default values

<turtle>.setheading (<degrees>) Sets the orientation to <degrees>

<turtle>.setposition (<x>, <y>) Positions the turtle at coordinates (<x>, <y>)

Turtle filling shapes

The PLS supports these turtle library module subprograms to control filling.

Subprogram Description

<turtle>.begin_fill () Call just before drawing a shape to be filled

<turtle>.end_fill () Call just after drawing the shape to be filled. You must 
call <turtle>.begin_fill() before drawing.

<turtle>.fillcolor (<colour>) Sets the colour used to fill. The input argument can 
be a string or an RGB colour. For example: "red", 
"#551A8B2", "(0, 35, 102)"



14
P71103A

Turtle controlling the pen

The PLS supports these turtle library module subprograms to control the pen.

Subprogram Description

<turtle>.pencolor (<colour>) Sets the colour of the pen. The input argument can be 
a string or an RGB colour. For example: "red", "#551A8B", 
"(0, 35, 102)"

<turtle>.pendown () Puts the pen down

<turtle>.pensize (<width>) Makes the pen the size of <width> (positive number)

<turtle>.penup () Lifts the pen up

Turtle circles

The PLS supports this turtle library module subprogram to draw a circle.

Subprogram Description

<turtle>.circle (<radius>, <extent>) Draws a circle with the given <radius>. The 
centre is the <radius> number of units to 
the left of the turtle. That means, the turtle is 
sitting on the edge of the circle. The parameter 
<extent> does not need to be given, but 
provides a way to draw an arc, if required. For 
example, an extent of 180 would be half a circle

Turtle colours

Python colours can be given by using a string name. There are many colours and you can find 
information online for lists of all the available colours.

Here are a few to get you started:

blue black green yellow

orange red pink purple

indigo olive lime navy

orchid salmon peru sienna

white cyan silver gold

Console session

A console session is the window or command line where the user interacts with a program. It is 
the default window that displays the output from print () and echoes the keys typed from 
the keyboard.

It will appear differently in different development tools.

Code style

Although Python does not require all arithmetic and logical/Boolean expressions be fully bracketed, it 
might help the readability to bracket them. This is especially useful if the programmer or reader is not 
familiar with the order of operator precedence.



15
P71103A

The same is true of spaces. The logic of a line can be more easily understood if a few extra spaces are 
introduced. This is especially helpful if a long line of nested subprogram calls is involved. It can be 
difficult to read where one ends and another begins. The syntax of Python is not affected, but it can 
make understanding the code much easier.

Line continuation

Long code lines may also be difficult to read, especially if they scroll off the edge of the display 
window. It’s always better for the programmer to limit the amount of scrolling.

There are several ways to break long lines in Python.

Python syntax allows long lines to be broken inside brackets (), square brackets [], and braces {}. This 
works very well, but care should be taken to ensure that the next line is indented to a level that aids 
readability. It is even possible and recommended to add an extra set of brackets () to expressions to 
break long lines.

Python also has a line continuation character, the backslash \ character. It can be inserted, following 
strict rules, into some expressions to cause a continuation. Some editors will automatically insert the 
line continuation character if the enter key is pressed.

Carriage return and line feed

These affect the way outputs appear on the screen and in a file. Carriage return means to go back 
to the beginning of the current line without going down to the next line. Line feed means to go 
down to the next line. Each is a non-printable ASCII character, that has an equivalent string in 
programming languages.

Name Abbreviation ASCII hexadecimal String

Carriage return CR 0x0D "\r"

Line feed LF 0x0A "\n"

These characters are used in some combination to control outputs. Unfortunately, not every 
operating system uses the same. However, editors automatically convert input and output files to 
make sure they work properly. In Python, print () automatically adds them so that the console 
output appears on separate lines.

When writing code to handle files, a programmer will need to remove some of these characters when 
reading lines from files and add them when writing lines to files. If needed, they are added with string 
concatenation. If needed to be removed, they are removed using the strip () subprogram.



16
P71103A

BLANK PAGE


	Proper Data Files for AA.pdf
	Q01
	Q02
	Q03
	Q04
	Q05
	Q06

	Blank Page



