
1

Examiners’ Report

Principal Examiner Feedback

June 2022

Pearson Edexcel GCSE In

Computer Science (1CP2/02)

Paper 2: Application of Computational

Thinking

2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body.

We provide a wide range of qualifications including academic, vocational, occupational and

specific programmes for employers. For further information visit our qualifications websites

at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using

the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone

progress in their lives through education. We believe in every kind of learning, for all kinds

of people, wherever they are in the world. We’ve been involved in education for over 150

years, and by working across 70 countries, in 100 languages, we have built an international

reputation for our commitment to high standards and raising achievement through

innovation in education. Find out more about how we can help you and your students at:

www.pearson.com/uk

June 2022

Publications Code 1CP2_02_ER_20220825

All the material in this publication is copyright

© Pearson Education Ltd 2022

http://www.edexcel.com/
http://www.btec.co.uk/
http://www.edexcel.com/contactus
http://www.pearson.com/uk

3

Introduction
This is the first examination of the Edexcel GCSE Computer Science (9-1), with the paper two

onscreen exam. The programming language required is Python 3.

Students are supplied with a question paper, a programming language subset document, and a code

file for each question. Students are required to amend the code files and save their work, using a

different file name.

Centres compress the code file responses for each student. The compressed files are uploaded to

Edexcel for external assessment, via the Learner Work Transfer program.

Centre submissions
The ICE document for this series set out the format in which students’ completed code files were to

be submitted. The majority of centres were able to follow the instructions accurately, ensuring that

a single zipped file of the COMPLETED_CODE folder was provided for each student. The submissions

were correctly identified with the centre and student number.

General

Attempting all questions
There were a number of scripts where students did not attempt Q05 and Q06, thereby missing an

opportunity to access some marks. There are partial marks that could be awarded in each question.

Students are reminded to attempt all the questions on the paper.

Readability
It is not necessary to comment every line of code in a solution. Some examples were seen where the

number of comments exceeded the number of code lines. Comments are to help understand the

logic, so should be placed, more helpfully, at the start of blocks of code. Excessive commenting

makes the response difficult to read.

White space also can help with readability, but there is no requirement to double space code. Use

white space between blocks of logic. Single spacing is appropriate for code.

Execute and test the code
In early questions, where precise instructions are given, students should attempt to run their code.

Students were seen to have created the correct code line, but not used the correct indentation level.

This made the code crash.

Spelling errors were also seen, which means that the code will not give the correct output. Students

could find and correct these simple errors by running the code.

In the Parson’s problem, the code should be executed with the test data given in the question paper.

Execution would quickly identify that some lines were still out of order.

4

Q1 – Complete the code
Solutions required completion of the provided lines or adding new lines of Python code to the given

file.

The majority of students submitted good responses.

Fewer marks were awarded to responses that demonstrated deleting, rewriting, or rearranging

sections of the supplied code.

Some responses demonstrated an inaccurate use of relational and logical operators.

Some responses used commas to join the strings on line 25. The use of commas to join strings

produces a tuple of strings, not a single string. The print() function will accept a tuple of strings

and display them one after another.

Valid range checks for the input numbers were awarded for those that excluded the values of 5 and

30 and those that included the values of 5 and 30.

Q1 Example 1

This question was awarded five marks. It is a good example demonstrating understanding of the

fundamental concepts of data types, arithmetic, assignment, and input and output.

5

Q1 Example 2

This response was awarded six marks. It includes a correct conversion between data types, in

addition to the fundamental understanding of input and output.

6

Q02 – Fix the errors
Solutions required students to identify a data type, fix syntax errors, fix logic errors, and add code to

produce the required functionality. This question is set in the context of turtle graphics.

The majority of students submitted good responses.

The most frequently lost mark was the comment required to identify the understanding of a string

data type. Fixing the syntax errors were the most commonly awarded marks. Fixing the logic errors

were the least commonly awarded marks.

Responses that used the variable theTurtle when adding the required new lines of code,

received full marks. Those that used the default turtle, turtle, could not access all the available

marks.

Q2 Example 1

7

This response was awarded seven marks. This is a good example showing correction of the three

runtime errors and the three logic errors.

8

Q2 Example 2

9

This example was awarded six marks. Again, the runtime errors have been corrected. In addition,

the colour of the pen is changed and the correct turtle is hidden.

10

Q03
Solutions required completion of the given code or adding new lines of Python code to the given file.

The majority of students submitted good responses.

Fewer marks were awarded to responses that demonstrated deleting, rewriting, or rearranging

sections of the supplied code.

The most frequent error was initialisation of the variable for the area of a circle to an integer value,

rather than a real value, with a decimal.

Again, errors were seen in the use of relational operators.

The marks in the levels-based mark scheme for functionality were awarded based on the translation,

execution, and accurate outputs produced by the response.

11

Q3 Example 1

This response was awarded eight marks. It is a very good example that demonstrates the skills of

code construction. However, as indicated above, the indentation has introduced inaccurate

behaviours.

12

Q3 Example 2

This response was awarded seven marks. It is a good example demonstrating skills in constructing

individual lines of code. However, the solution either crashes or the outputs do not meet

requirements.

13

Q04 – Parsons problem
This question required reordering of the provided code lines to create a functional program that

converted binary patterns to unsigned integer values. The lines of code were presented as a

subprogram and a main program. The levels of indentation for each line were correct in the given

code file.

Many responses were seen that achieved full marks on this question.

Some responses changed the levels of indentation for the supplied lines. Doing this means that the

response will not execute as designed. As a result, those responses could not access the last two

mark points, which were based on the functionality of the final result.

Where there was no vertical movement in a section, subprogram or main program, no marks could

be awarded.

Q04 Example 1

This response was awarded four marks. Reordering of the lines has been attempted and there are

no indentation errors introduced. This response demonstrates, even in high-tariff questions, there

are opportunities to earn marks.

14

Q04 Example 2

This response was awarded 11 marks. The majority of the given lines have been ordered correctly

and there are no indentation errors. Although the response does execute, the outputs do not meet

requirements.

15

Q05 – Writing a file
This question required responses that opened a file, wrote records from an internal data structure to

that file, and then closed the file.

There were many creative responses to this problem, some of which achieved full marks.

The levels-based mark schemes for design and functionality provided students with opportunities to

be rewarded for their approaches to the solution, independently of its functionality.

Simple design approaches, such as iterating across the array, building an output string of seven

columns, and then writing that string to the file were seen. They often achieved full marks.

Other solutions included slicing the data structure into a sequence of lists, converting the lists to

strings, and writing them to the file. These solutions often did not handle the commas correctly, as

the conversion from a list to a string introduced spaces as well as commas and square brackets.

Two common errors included the use of the constants provided in the file. The file name constant

was used inaccurately for the file open instruction. The constant controlling for the seven columns

was either not used or used in combinations with a hard-coded seven.

Although the modulus function was not required in the solution, many responses included it in the

calculation for determining when a line feed was needed in the output.

16

Q5 Example 1

This response was awarded 13 marks. This is a good response that demonstrates logical and

coherent solution design, dealing with the requirement for seven columns per line. The solution is

functional and the outputs meet the requirements set out in the question paper.

17

Q5 Example 2

This response was awarded 15 marks. In this response, the constants have been used correctly. It is

another good example of solution decomposition and functionality.

18

Q5 Example 3

This response was awarded 13 marks. This is a good example demonstrating the use of slicing and

conversion of a list to a string for outputting. However, the conversion has introduced a space after

the commas, so it is not fully functional.

19

Q5 Example 4

This response earned five marks. This response opens and closes a file, so does have some

functionality.

20

Q06 – 2D linear search
Many responses were able to search the data structure for an identified word, but were not able to

identify when a location was passed over or if the item was not in the data structure.

Some responses included mechanisms for correctly tracking the suggested word, although many

tried to just suggest the next word along, with no consideration if it was outside the end of the array.

This led to runtime errors. Conversely, other responses always suggested the last word in the array,

regardless if it were the correct suggestion.

There were some examples of confusion with string comparisons. Some responses attempted to

compare the target word with the tile word, letter by letter, rather than with a simple relational

operator over the entire two-letter string. Most of these attempts did not work successfully.

The levels-based mark scheme for design is included in this question. This mark scheme takes into

consideration the number of compares in loop passes. Some responses that correctly used a loop to

process the data, used a selection to check if the item was the last in the list, as well. Other

responses used an iterative loop and processed every item in the data, ignoring the requirements for

an early exit.

The levels-based mark scheme for programming practice is included in this question. The majority of

responses received two of these marks. A few responses missed out on the third mark because of

the excessive amounts of comments. For a band three, the response should include effective

commenting used to explain logic of code blocks and code that is clear, with good use of white space

to aid readability. Excessive commenting makes the code less readable, rather than more readable.

Q6 Example 1

This response was awarded 11 marks. This is a good example demonstrating locating the target in

the list and identifying if the target location was passed over. The requirement for an early exit has

not been met.

21

Q6 Example 2

This response was awarded eight marks. This is a good attempt at solving an unseen problem. The

response demonstrates a loop and comparison for matching items, as required in a solution. As

validation of input was not a requirement of the solution, no marks were awarded for lines 35 to 42,

whether or not they function correctly.

22

Q6 Example 3

This response was awarded 15 marks. This is a good example of a well-designed, coded, and

functional solution. The validation on line 44 is not required. Comments have been used to explain

the logic, but are not excessive.

23

Q6 Example 4

This response was awarded five marks. It demonstrates the use of a loop and selection, as required

in a solution. Although the solution is not functional, it demonstrates that marks can be earned by

attempting a solution.

Summary
Students should:

• Attempt every question in the paper.

• Follow the instructions in the paper and do not rewrite the supplied code.

• Remove all the syntax errors from ode so that it will translate.

• Execute and test code with the data supplied in the question.

• Use effective, but not excessive, commenting and white space to make the program logic

clear.

