# 

| Please write clearly | in block conitals   |                  |  |
|----------------------|---------------------|------------------|--|
| Flease while clearly | III DIOCK Capitals. |                  |  |
| Centre number        |                     | Candidate number |  |
| Surname              |                     |                  |  |
| Forename(s)          |                     |                  |  |
| Candidate signature  | ÷                   |                  |  |

## GCSE COMPUTER SCIENCE

Paper 1 - Computational thinking and programming skills

Specimen Assessment MaterialsTime allowed: 2 hours

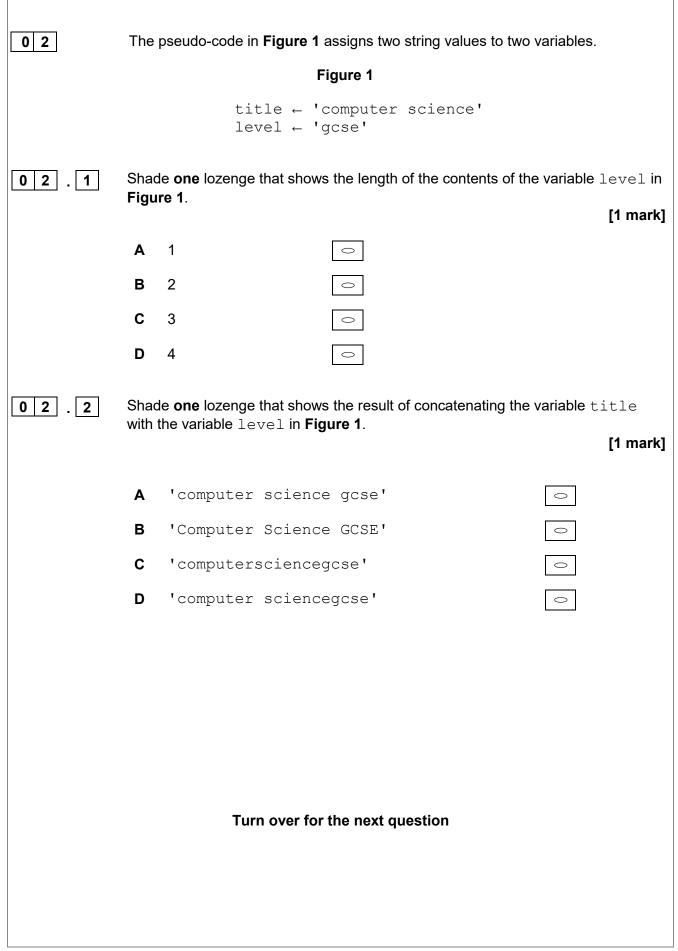
#### Materials

- There are no additional materials required for this paper.
- You must **not** use a calculator.

#### Instructions

- Use black ink or black ball-point pen. Use pencil only for drawing.
- Answer **all** questions.
- You must answer the questions in the spaces provided.
- Do all rough work in this book.
- Cross through any work you do not want to be marked.
- Questions that require a coded solution must be answered in VB.Net

#### Information


• The total number of marks available for this paper is 90.

### Advice

| $^\prime$ For the multiple-choice questions, co | ompletely fill in the lozenge alongside the appropriate answer. |
|-------------------------------------------------|-----------------------------------------------------------------|
|                                                 | WRONG METHODS 🗴 💿 📾 🔯                                           |
| If you want to change your answer yo            | ou must cross out your original answer as shown. 💌              |
| If you wish to return to an answer pre          | viously crossed out, ring the answer you now wish to select as  |
| shown.                                          |                                                                 |



|         | Answer <b>all</b> questions.                                                                                          |              |        |
|---------|-----------------------------------------------------------------------------------------------------------------------|--------------|--------|
| 0 1 . 1 | Define the term algorithm.                                                                                            | [2 r         | narks] |
|         |                                                                                                                       |              |        |
|         |                                                                                                                       |              |        |
| 0 1 . 2 | The following are computer science terms (labelled $\mathbf{A} - \mathbf{E}$ ).                                       |              |        |
|         | <ul> <li>A assignment</li> <li>B data type</li> <li>C decomposition</li> <li>D efficiency</li> <li>E input</li> </ul> |              |        |
|         | For each of the definitions in the table, write the label of the mo<br>computer science term. Use a label only once.  | ost suitable |        |
|         |                                                                                                                       | [3 n         | narks] |
|         |                                                                                                                       | Label        | ]      |
|         | Breaking a problem down into a number of sub-problems                                                                 |              |        |
|         | The process of setting the value stored in a variable                                                                 |              |        |
|         | Defines the range of values a variable may take                                                                       |              |        |
|         |                                                                                                                       |              |        |
|         |                                                                                                                       |              |        |



| 0 3     |       |                                                | <b>e 2</b> has been developed to automate the quantity of dog bowl at certain times of the day.  |
|---------|-------|------------------------------------------------|--------------------------------------------------------------------------------------------------|
|         | •     | Line numbers a                                 | re included but are not part of the algorithm.                                                   |
|         |       |                                                | Figure 2                                                                                         |
|         |       | 1                                              | time 🗲 USERINPUT                                                                                 |
|         |       | 2                                              | IF time = 'breakfast' THEN                                                                       |
|         |       | 3<br>4                                         | $q \leftarrow 1$<br>ELSE IF time = 'lunch' THEN                                                  |
|         |       | 5                                              | q ← 4                                                                                            |
|         |       | 6                                              | ELSE IF time = 'dinner' THEN                                                                     |
|         |       | 7                                              | q ← 2                                                                                            |
|         |       | 8<br>9                                         | ELSE<br>OUTPUT 'time not recognised'                                                             |
|         |       | 10                                             | ENDIF                                                                                            |
|         |       | 11                                             | FOR n 🗲 1 TO q                                                                                   |
|         |       | 12                                             | IF $n < 3$ THEN                                                                                  |
|         |       | 13<br>14                                       | DISPENSE_BISCUIT('chewies')<br>ELSE                                                              |
|         |       | 15                                             | DISPENSE_BISCUIT('crunchy')                                                                      |
|         |       | 16                                             | ENDIF                                                                                            |
|         |       | 17                                             | ENDFOR                                                                                           |
|         |       |                                                |                                                                                                  |
| 0 3 . 1 |       | -                                              | nich shows the line number where selection is <b>first</b> used in                               |
|         | the a | algorithm shown in                             | Figure 2. [1 mark]                                                                               |
|         | Α     | Line number 2                                  | $\bigcirc$                                                                                       |
|         | в     | Line number 4                                  | $\bigcirc$                                                                                       |
|         | С     | Line number 9                                  | 0                                                                                                |
|         | D     | Line number 12                                 | $\bigcirc$                                                                                       |
| 0 3 . 2 |       | de <b>one</b> lozenge wh<br>algorithm shown in | nich shows the line number where iteration is <b>first</b> used in <b>Figure 2</b> .<br>[1 mark] |
|         |       |                                                |                                                                                                  |
|         | Α     | Line number 1                                  | 0                                                                                                |
|         | В     | Line number 8                                  | 0                                                                                                |
|         | С     | Line number 11                                 | 0                                                                                                |
|         | D     | Line number 13                                 | 0                                                                                                |

ſ

| 03.3  | Shade one lozenge which shows how many times the subroutine<br>DISPENSE_BISCUIT would be called if the user input is 'breakfast' in<br>Figure 2. |                                                                                     |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|
|       |                                                                                                                                                  | [1 mark]                                                                            |  |  |  |  |
|       | A 1 subroutine call                                                                                                                              | 0                                                                                   |  |  |  |  |
|       | <b>B</b> 2 subroutine calls                                                                                                                      | 0                                                                                   |  |  |  |  |
|       | <b>C</b> 3 subroutine calls                                                                                                                      | 0                                                                                   |  |  |  |  |
|       | <b>D</b> 4 subroutine calls                                                                                                                      | 0                                                                                   |  |  |  |  |
| 0 3.4 | Shade <b>one</b> lozenge which shows the algorithm shown in <b>Figure 2</b> .                                                                    | data type of the variable <code>time</code> in the                                  |  |  |  |  |
|       | algonum snown in <b>r igure 2</b> .                                                                                                              | [1 mark]                                                                            |  |  |  |  |
|       | A Date/Time                                                                                                                                      | 0                                                                                   |  |  |  |  |
|       | B String                                                                                                                                         | 0                                                                                   |  |  |  |  |
|       | C Integer                                                                                                                                        | 0                                                                                   |  |  |  |  |
|       | <b>D</b> Real                                                                                                                                    | $\bigcirc$                                                                          |  |  |  |  |
| 03.5  | with the parameter 'chewies' if th                                                                                                               | DISPENSE_BISCUIT will be called<br>e user input is 'lunch' in Figure 2.<br>[1 mark] |  |  |  |  |
|       | Turn over for the next                                                                                                                           | question                                                                            |  |  |  |  |
|       |                                                                                                                                                  |                                                                                     |  |  |  |  |
|       |                                                                                                                                                  |                                                                                     |  |  |  |  |
|       |                                                                                                                                                  |                                                                                     |  |  |  |  |
|       |                                                                                                                                                  |                                                                                     |  |  |  |  |
|       |                                                                                                                                                  |                                                                                     |  |  |  |  |

| 0 | 4                                   | integers and the<br>Complete the pr                                                                                                                                                   | n output which of<br>ogram below by f<br>d to use all the ite | let program that asks<br>the two integers is th<br>illing in the gaps using<br>ems in <b>Figure 3</b> . Each | e largest.<br>g the items in <b>Fig</b> | jure 3. |
|---|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------|
|   |                                     |                                                                                                                                                                                       |                                                               |                                                                                                              | [5                                      | marks]  |
|   |                                     |                                                                                                                                                                                       | Figure                                                        | 3                                                                                                            |                                         |         |
|   |                                     | Console.Write                                                                                                                                                                         | num1                                                          | num2                                                                                                         | output                                  |         |
|   |                                     | Else                                                                                                                                                                                  | <                                                             | >                                                                                                            | ElseIf                                  |         |
|   |                                     | String                                                                                                                                                                                | Double                                                        | Integer                                                                                                      |                                         |         |
|   | Dim<br>Cons<br>num1<br>Cons<br>num2 | <pre>numl As Integer<br/>num2 As<br/>sole.Write("Enter a<br/>l = Console.ReadLin<br/>sole.Write("Enter a<br/>2 = Console.ReadLin<br/>num1 &gt; num2 Then<br/>Console.WriteLine(</pre> | ne()<br>unother numb<br>ne()                                  | er: ")<br>is bigger.")                                                                                       |                                         |         |
|   | Else                                |                                                                                                                                                                                       | num2 Then                                                     | IS DIGGEL. )                                                                                                 |                                         |         |
|   |                                     | Console.WriteLine(                                                                                                                                                                    |                                                               |                                                                                                              |                                         |         |
|   | End                                 | If                                                                                                                                                                                    |                                                               |                                                                                                              |                                         |         |

|   |   | <ul> <li>required)</li> <li>calculate the taxi fare by         <ul> <li>charging £2 for every passenger regardless of the distance</li> <li>charging a further £1.50 for every kilometre regardless of how many passengers there are</li> </ul> </li> <li>output the final taxi fare.</li> </ul> |
|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |   | ou <b>should</b> use meaningful variable name(s), correct syntax and indentation your answer.                                                                                                                                                                                                    |
|   |   | ne answer grid below contains vertical lines to help you indent your code curately.                                                                                                                                                                                                              |
|   |   | [7 marks]                                                                                                                                                                                                                                                                                        |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
|   |   |                                                                                                                                                                                                                                                                                                  |
| 1 | + |                                                                                                                                                                                                                                                                                                  |

The program should:

0 5

- allow the user to enter the journey distance in kilometres (no validation is required)
- allow the user to enter the number of passengers (no validation is •

|  | <br> |  |
|--|------|--|
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |
|  |      |  |

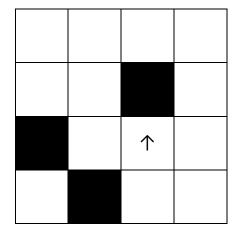
9 0 6 Write a VB.Net program that inputs a password and checks if it is correct. Your program should work as follows: input a password and store it in a suitable variable • if the password entered is equal to secret display the message Welcome • if the password entered is not equal to secret display the message Not • welcome. You should use meaningful variable name(s), correct syntax and indentation in your answer. The answer grid below contains vertical lines to help you indent your code accurately. [5 marks]

| Image: Section of the section of th |      |  |   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|---|--|
| Image: |      |  |   |  |
| Image: |      |  |   |  |
| Image: Section of the section of th |      |  |   |  |
| Image: |      |  |   |  |
| Image: |      |  |   |  |
| Image: Section of the section of th |      |  |   |  |
| Image: |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
| Image: |      |  |   |  |
| Image: |      |  |   |  |
| Image: Section of the section of th |      |  |   |  |
| Image: |      |  |   |  |
| Image: |      |  |   |  |
| Image: Section of the section of th |      |  |   |  |
| Image: Section of the section of th |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
| Image: | 1    |  | İ |  |
| Image: |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
| Image: |      |  |   |  |
| Image: Section of the section of th |      |  |   |  |
| Image: | <br> |  |   |  |
| Image: Section of the section of th |      |  |   |  |
| Image: Section of the section of th |      |  |   |  |
| Image: |      |  |   |  |
| Image: |      |  |   |  |
| Image: Section of the section of th |      |  |   |  |
| Image: Section of the section of th |      |  |   |  |
| Image: |      |  |   |  |
| Image: |      |  |   |  |
| Image: Section of the section of th |      |  |   |  |
| Image: Section of the section of th |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br> |  |   |  |
| Image: |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  | ļ |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |  |   |  |

| 0 7     | The algorithm in <b>Figure 4</b> is a sorting algorithm.                                                                                                                                                                                                                                                                                                                                              |                    |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|         | <ul><li>Array indexing starts at 0.</li><li>Line numbers are included but are not part of the algorithm.</li></ul>                                                                                                                                                                                                                                                                                    |                    |
|         | Figure 4                                                                                                                                                                                                                                                                                                                                                                                              |                    |
|         | 1 arr $\leftarrow$ [4, 1, 6]<br>2 swapsMade $\leftarrow$ false<br>3 WHILE swapsMade = false<br>4 swapsMade $\leftarrow$ true<br>5 i $\leftarrow$ 0<br>6 WHILE i < 2<br>7 IF arr[i+1] < arr[i] THEN<br>8 t $\leftarrow$ arr[i]<br>9 arr[i] $\leftarrow$ arr[i+1]<br>10 arr[i+1] $\leftarrow$ t<br>11 swapsMade $\leftarrow$ false<br>12 ENDIF<br>13 i $\leftarrow$ i + 1<br>14 ENDWHILE<br>15 ENDWHILE |                    |
| 07.1    | State the data type of the variable swapsMade in the algorithm sho<br>Figure 4.                                                                                                                                                                                                                                                                                                                       | own in<br>[1 mark] |
| 0 7 . 2 | The identifier swapsMade is used in the algorithm shown in Figure                                                                                                                                                                                                                                                                                                                                     | <b>9 4</b> .       |
|         | Explain why this is a better choice than using the identifier ${\tt s}$ .                                                                                                                                                                                                                                                                                                                             | [2 marks]          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                       |                    |

| 0 7 . 3 | Shade <b>one</b> lozenge to show which of the following contains the <b>false</b> statement about the algorithm in <b>Figure 4</b> . |                       |          |          |                     |                      |    |                      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|----------|---------------------|----------------------|----|----------------------|
|         | about                                                                                                                                | and ange              |          |          |                     |                      | [1 | mark]                |
|         | A                                                                                                                                    | The algo              | orithm ı | uses a r | named constant.     |                      | 0  |                      |
|         | В                                                                                                                                    | The algo              | orithm ı | uses inc | lefinite iteration. |                      | 0  |                      |
|         | С                                                                                                                                    | The algo              | orithm u | uses ne  | sted iteration.     |                      | 0  |                      |
| 07.4    |                                                                                                                                      | lete the<br>already l |          |          | the algorithm sh    | own in <b>Figure</b> |    | es<br>n <b>arks]</b> |
|         |                                                                                                                                      |                       | arr      |          | GWADGMAdo           |                      | L  |                      |
|         |                                                                                                                                      | [0]                   | [1]      | [2]      | swapsMade           | i                    | t  |                      |
|         |                                                                                                                                      | 4                     | 1        | 6        | false               |                      |    |                      |
|         |                                                                                                                                      |                       |          |          |                     |                      |    |                      |
|         |                                                                                                                                      |                       |          |          |                     |                      |    |                      |
|         |                                                                                                                                      |                       |          |          |                     |                      |    |                      |
|         |                                                                                                                                      |                       |          |          |                     |                      |    |                      |
|         |                                                                                                                                      |                       |          |          |                     |                      |    |                      |
|         |                                                                                                                                      |                       |          |          |                     |                      |    |                      |
|         |                                                                                                                                      |                       |          |          |                     |                      |    |                      |
|         |                                                                                                                                      |                       |          |          |                     |                      |    |                      |
|         |                                                                                                                                      | L                     | 1        | 1        | 1                   |                      | 1  | J                    |
|         |                                                                                                                                      |                       |          |          |                     |                      |    |                      |

| 0 8 | Write a VB.Net program that inputs a character and checks to see if it is lowercase or not.                                                                                                                                                                                                                   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Your program should work as follows:                                                                                                                                                                                                                                                                          |
|     | <ul> <li>gets the user to enter a character and store it in a suitable variable</li> <li>determines if the entered character is a lowercase character</li> <li>outputs LOWER if the user has entered a lowercase character</li> <li>outputs NOT LOWER if the user has entered any other character.</li> </ul> |
|     | You <b>should</b> use meaningful variable name(s), correct syntax and indentation in your answer.                                                                                                                                                                                                             |
|     | The answer grid below contains vertical lines to help you indent your code accurately.                                                                                                                                                                                                                        |
|     | [7 marks]                                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                               |

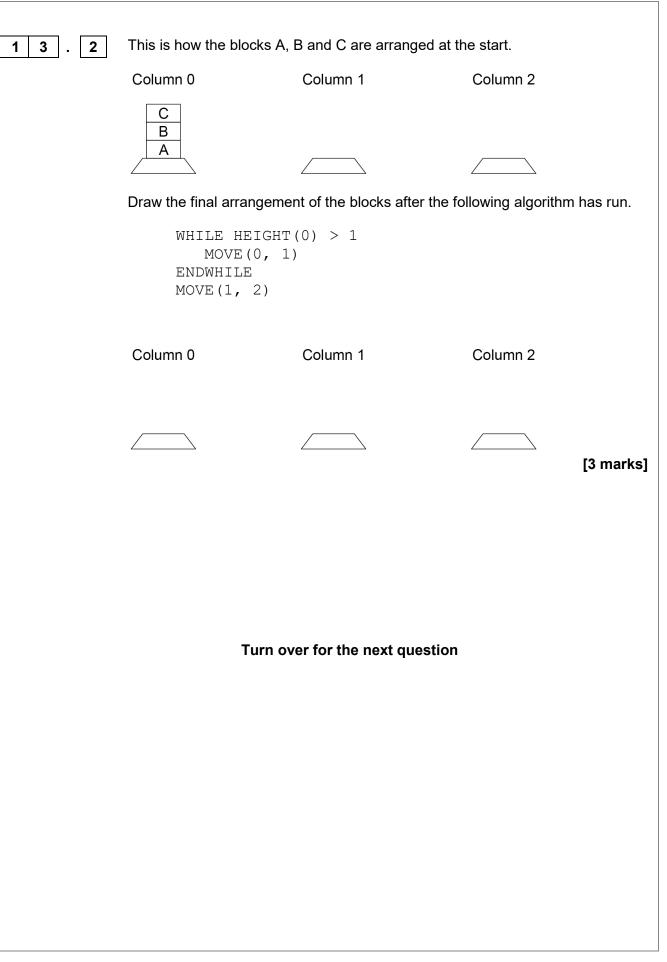

| 09   | <ul> <li>Four separate subroutines have been written to control a robot.</li> <li>Forward (n) moves the robot n squares forward.</li> <li>TurnLeft () turns the robot 90 degrees left.</li> <li>TurnRight () turns the robot 90 degrees right.</li> <li>ObjectAhead () returns true if the robot is facing an object in the negative or returns follow if this equate is empty.</li> </ul> | ext  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | square or returns false if this square is empty.                                                                                                                                                                                                                                                                                                                                           |      |
| 09.1 | Draw the path of the robot through the grid below if the following program is executed (the robot starts in the square marked by the $\uparrow$ facing in the direction the arrow).                                                                                                                                                                                                        | ۱ of |
|      | Forward(2)<br>TurnLeft()<br>Forward(1)<br>TurnRight()<br>Forward(1)                                                                                                                                                                                                                                                                                                                        |      |
|      | [3 mar                                                                                                                                                                                                                                                                                                                                                                                     | ks]  |
|      |                                                                                                                                                                                                                                                                                                                                                                                            |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                            |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                            |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                            |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                            |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                            |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                            |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                            |      |

 $\uparrow$ 

**0 9 . 2** Draw the path of the robot through the grid below if the following program is executed (the robot starts in the square marked by the ↑ facing in the direction of the arrow). If a square is black then it contains an object.

```
WHILE ObjectAhead() = true
TurnLeft()
    IF ObjectAhead() = true THEN
       TurnRight()
       ENDIF
Forward(1)
ENDWHILE
Forward(1)
```

[3 marks]




Turn over for the next question

State two benefits of developing solutions using the structured approach. [2 marks] Fill in the blank arrays to show the steps involved in applying the bubble sort algorithm to the array [3, 5, 1, 4, 2]. You only need to show the missing steps where a change is applied to the array. [5 marks] 

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Do not wi<br>outside t |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1 2     | A developer is developing a program for a client. The developer is given the following instructions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | box                    |
|         | "Many of my friends ask me to walk their dogs for them. All of these friends<br>pay me to do this and the amount I get paid depends on how long I walk their<br>dogs for. If they have more than one dog then I don't charge the owner any<br>extra. I like to walk the dogs in the afternoon when the weather is normally best<br>because I often get colds. I need you to help me keep track of how much I'm<br>owed – fortunately for me all of my friends have different first names so it is<br>really easy to tell them apart. I charge £10 for every 30 minutes of the walk<br>(and I always round this up so 47 minutes would be two half-hour charges or<br>£20). |                        |
| 1 2 . 1 | The developer needs to remove all of the unnecessary detail from the client's request. Shade the lozenge next to the name for this process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|         | [1 mark]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
|         | A Abstraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
|         | B Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
|         | C Decomposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|         | D Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| 12.2    | The developer has decided that the following two points are the only important details from the client's request.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
|         | <ul> <li>The charge is based on time and not how many dogs are walked.</li> <li>The charge is £10 every 30 minutes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|         | State <b>two</b> other relevant details that the developer has missed.<br>[2 marks]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |

| 1 3      | The following subroutin<br>different columns. | es control the way th | nat labelled blocks are placed in                                                 |
|----------|-----------------------------------------------|-----------------------|-----------------------------------------------------------------------------------|
|          | BLOCK_C                                       | N_TOP(column)         | returns the label of the block<br>on top of the column given as<br>a parameter.   |
|          | MOVE(source,                                  | destination)          | moves the block on top of the source column to the top of the destination column. |
|          | H                                             | HEIGHT (column)       | returns the number of blocks in the specified column.                             |
| 1 3 . 1  | This is how the blocks                        | A, B and C are arrar  | nged at the start.                                                                |
|          | Column 0                                      | Column 1              | Column 2                                                                          |
|          | C<br>B<br>A                                   |                       |                                                                                   |
|          | Draw the final arranger                       | ment of the blocks af | ter the following algorithm has run.                                              |
|          | MOVE(0, 1)<br>MOVE(0, 2)<br>MOVE(0, 2)        |                       |                                                                                   |
|          | Column 0                                      | Column 1              | Column 2                                                                          |
|          |                                               |                       |                                                                                   |
|          |                                               |                       | [3 marks]                                                                         |
|          |                                               |                       |                                                                                   |
|          |                                               |                       |                                                                                   |
|          |                                               |                       |                                                                                   |
|          |                                               |                       |                                                                                   |
|          |                                               |                       |                                                                                   |
| <u>L</u> |                                               |                       |                                                                                   |



|         |                      |                                                   |                                                               | Do not<br>outside |
|---------|----------------------|---------------------------------------------------|---------------------------------------------------------------|-------------------|
| 1 3 . 3 |                      | nm using either pseudo-co<br>blumn 0 to column 1. | de or a flowchart that will m                                 | ove               |
|         | may assume there     |                                                   | locks start in column 0. You<br>e block in column 0 at the st |                   |
|         | The order of the blo | ocks must be preserved.                           |                                                               |                   |
|         |                      |                                                   | a block from one column to<br>subroutine in your answer.      |                   |
|         | For example, if the  | starting arrangement of th                        | ne blocks is:                                                 |                   |
|         | Column 0             | Column 1                                          | Column 2                                                      |                   |
|         | B                    |                                                   |                                                               |                   |
|         |                      |                                                   |                                                               |                   |
|         | Then the final arrar | ngement should have bloc                          | k B above block A:                                            |                   |
|         | Column 0             | Column 1                                          | Column 2                                                      |                   |
|         |                      | В                                                 |                                                               |                   |
|         |                      |                                                   |                                                               |                   |
|         |                      |                                                   | [4 n                                                          | narks]            |
|         |                      |                                                   |                                                               |                   |
|         |                      |                                                   |                                                               |                   |
|         |                      |                                                   |                                                               |                   |
|         |                      |                                                   |                                                               |                   |
|         |                      |                                                   |                                                               |                   |
|         |                      |                                                   |                                                               |                   |
|         |                      |                                                   |                                                               |                   |
|         |                      |                                                   |                                                               |                   |
|         |                      |                                                   |                                                               |                   |
|         |                      |                                                   |                                                               |                   |
|         |                      |                                                   |                                                               |                   |



A programmer has written the VB.Net program in Figure 5 to add up the 1 4 numbers between one and five. Figure 5 Dim total As Integer = 0Dim number As Integer = 0For number = 1 To 5total = total + number Next Console.WriteLine(total) The program needs to be changed so that it also multiplies all of the numbers between one and five. Shade **one** lozenge next to the program that will do what the programmer wants. [1 mark] Dim total As Integer = 0 $\bigcirc$ Dim product As Integer = 1Dim number As Integer = 0For number = 1 To 5total = total + number Α product = total \* number Next Console.WriteLine(total) Console.WriteLine(product) Dim total As Integer = 0 $\bigcirc$ Dim product As Integer = 1Dim number As Integer = 0For number = 1 To 5total = total + number В product = product \* number Next Console.WriteLine(total) Console.WriteLine(product) Dim total As Integer = 0 $\bigcirc$ Dim product As Integer = 1Dim number As Integer = 0For number = 1 To 5total = total + number С product = product \* total Next Console.WriteLine(total) Console.WriteLine(product) Dim total As Integer = 0 $\bigcirc$ Dim product As Integer = 1Dim number As Integer = 0For number = 1 To 5D total = total + number product = (total + product) \* number Next Console.WriteLine(total) Console.WriteLine(product)

Do not write outside the box 15

A program has been written in VB.Net to display all the odd integers between 1 and the largest odd number smaller than an integer entered by the user. The program is shown in **Figure 6**.

#### Figure 6

```
Dim odd As Integer = 1
Dim number As Integer
Console.Write("Enter an integer: ")
number = Console.ReadLine()
While odd <> number
    Console.WriteLine(odd)
    odd = odd + 2
End While
Console.WriteLine("Finished!")
```

The program works correctly if the integer entered by the user is an odd, positive integer. For example, if 7 is entered the program correctly displays the values 1, 3 and 5

The program does not work correctly if an odd integer less than 1 is entered by the user. For example, when -7 is entered the program should display the values 1, -1, -3 and -5 but it doesn't do this.

Using VB.Net only, change the program code inside the while loop so that it will work correctly for any odd integer entered by the user.

[4 marks]

| <br>, | <br> |  |
|-------|------|--|
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       | <br> |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
| <br>  | <br> |  |
|       |      |  |
|       |      |  |
| <br>  | <br> |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |
|       |      |  |

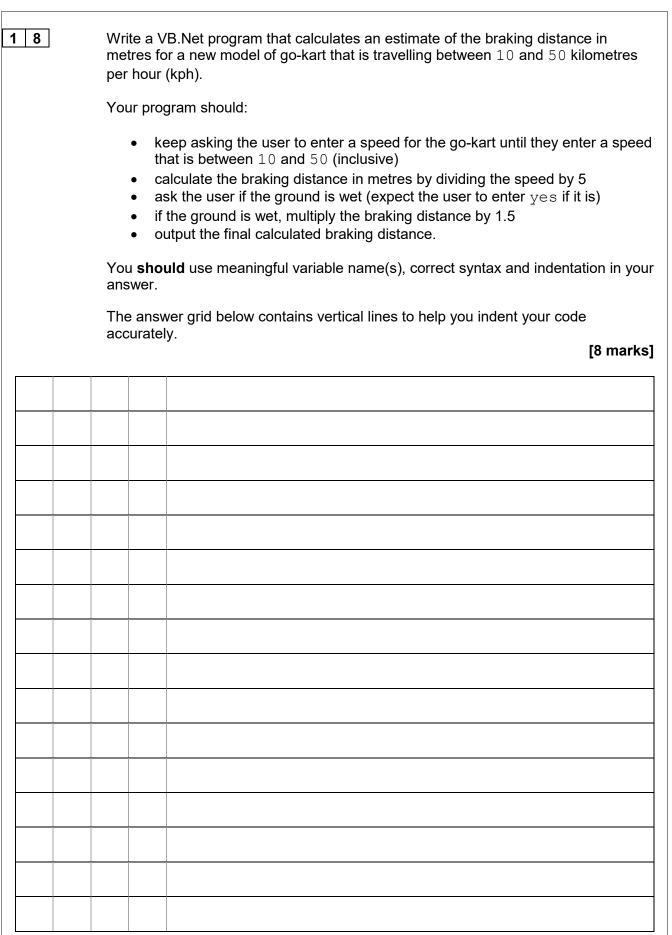
|  |      |  | _ |
|--|------|--|---|
|  |      |  |   |
|  | <br> |  |   |
|  |      |  |   |
|  |      |  |   |
|  |      |  |   |
|  |      |  |   |
|  |      |  |   |
|  |      |  |   |
|  |      |  |   |
|  |      |  |   |
|  | <br> |  |   |
|  | <br> |  |   |
|  |      |  |   |
|  |      |  |   |
|  | <br> |  |   |
|  | <br> |  |   |
|  |      |  | ] |

Figure 7 shows part of a program written in VB.Net.

6

1

#### Figure 7


```
Dim validChoice As Boolean
Dim choice As Integer
validChoice = False
While validChoice = False
Console.Write("Enter your choice [1 - 10] ")
choice = Console.ReadLine()
If choice >= 1 And choice <= 10 Then
validChoice = True
Else
Console.WriteLine("Invalid choice")
End If
End While
Console.WriteLine("Valid choice")
```

Complete the following test plan for the code shown in Figure 7.

| Test<br>type     | Test data | Expected result                |
|------------------|-----------|--------------------------------|
| Normal<br>data   | 5         | Valid choice message displayed |
| Invalid<br>data  |           |                                |
| Boundary<br>data |           |                                |

[2 marks]

| 1 7   | Figure 8 shows a VB.Net program that is being developed.                                                                                                                                                                                                                                                           |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | It is supposed to calculate and display the highest common factor of two numbers entered by the user.                                                                                                                                                                                                              |
|       | The highest common factor of two numbers is the largest number that both numbers can be divided by without leaving a remainder.                                                                                                                                                                                    |
|       | Examples:                                                                                                                                                                                                                                                                                                          |
|       | <ul> <li>the highest common factor of the numbers 6 and 9 is 3</li> <li>the highest common factor of 2 and 5 is 1</li> </ul>                                                                                                                                                                                       |
|       | Line numbers are shown but are not part of the program code.                                                                                                                                                                                                                                                       |
|       | Figure 8                                                                                                                                                                                                                                                                                                           |
|       | <pre>1 Dim numl As Integer = Console.ReadLine() 2 Dim num2 As Integer = Console.ReadLine() 3 Dim hcf As Integer = 1 4 Dim count As Integer = 1 5 While count &lt; num1 6 If num1 Mod count = 0 And num2 Mod count = 0 Then 7 hcf = count 8 End If 9 count = count + 1 10 End While 11 Console.WriteLine(hcf)</pre> |
|       | The program in <b>Figure 8</b> works correctly sometimes but not always. When the user enters the numbers 4 and 6 it correctly outputs 2, but when the user enters the numbers 4 and 4 it should output 4 but it does not.                                                                                         |
| 17.1  | State the output from the program in <b>Figure 8</b> when the user enters the numbers 4 and 4 [1 mark]                                                                                                                                                                                                             |
| 1 7.2 | State the line number from the program in <b>Figure 8</b> which contains the error that stops the program from sometimes working correctly. [1 mark]                                                                                                                                                               |
| 1 7.3 | Describe how the line of code identified in your answer to <b>17.2</b> should be changed so that the program in <b>Figure 8</b> will work correctly.<br>[1 mark]                                                                                                                                                   |
|       |                                                                                                                                                                                                                                                                                                                    |



#### END OF QUESTIONS

#### Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from <a href="http://www.aqa.org.uk">www.aqa.org.uk</a>.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2019 AQA and its licensors. All rights reserved.