

Please write clearly	/ in block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signatur	e		

GCSE COMPUTER SCIENCE

Paper 1 - Computational thinking and programming skills

Specimen Assessment MaterialsTime allowed: 2 hours

Materials

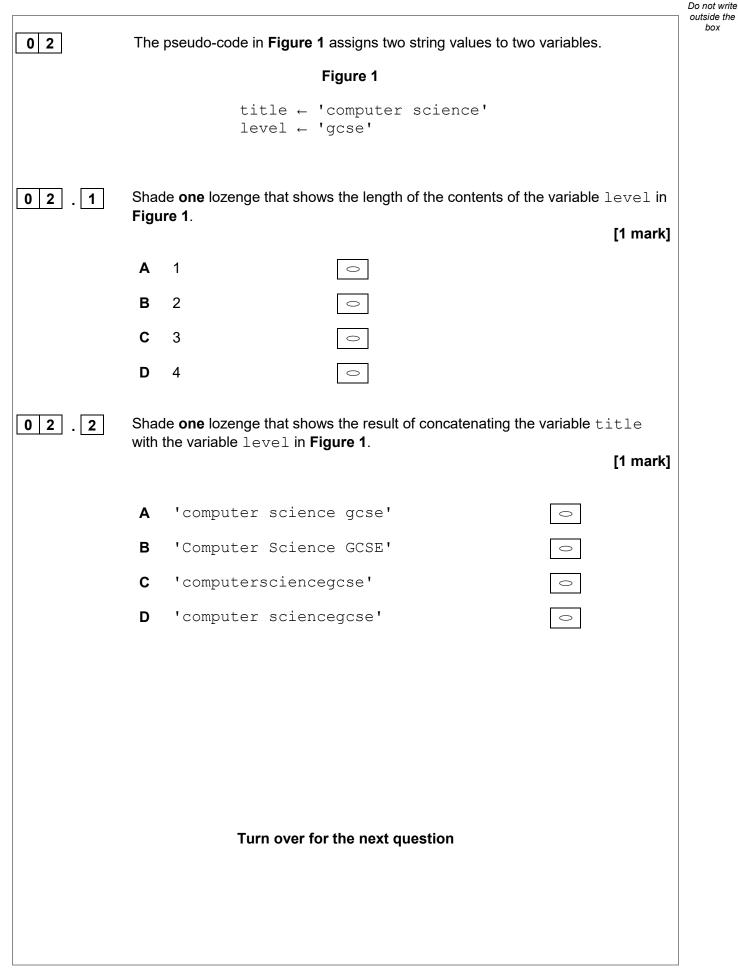
- There are no additional materials required for this paper.
- You must **not** use a calculator.

Instructions

- Use black ink or black ball-point pen. Use pencil only for drawing.
- Answer **all** questions.
- You must answer the questions in the spaces provided.
- Do all rough work in this book.
- Cross through any work you do not want to be marked.
- Questions that require a coded solution must be answered in C#

Information

• The total number of marks available for this paper is 90.


Advice

/	or the multiple-choice questions, completely fill in the lozenge alongside the appropriate answer.
	CORRECT METHOD WRONG METHODS 🐼 💿 🚖 🗹
	f you want to change your answer you must cross out your original answer as shown. 💌
lf	ou wish to return to an answer previously crossed out, ring the answer you now wish to select as
S	own.

Answer all questions.						
0 1 . 1	Define the term algorithm.	[2 m	arks]			
0 1 . 2	The following are computer science terms (labelled $\mathbf{A} - \mathbf{E}$).					
	A assignmentB data type					
	C decompositionD efficiencyE input					
	For each of the definitions in the table, write the label of the mo computer science term. Use a label only once.	ost suitable				
		[3 ma	arks]			
		Label				
	Breaking a problem down into a number of sub-problems					
	The process of setting the value stored in a variable					
	Defines the range of values a variable may take					

box

03		algorithm in Figure 2 has been developed to automate the quant uits to put in a dog bowl at certain times of the day.	tity of dog
	•	• Line numbers are included but are not part of the algorithm.	
		Figure 2	
		1 time \leftarrow USERINPUT 2 IF time = 'breakfast' THEN 3 $q \leftarrow 1$ 4 ELSE IF time = 'lunch' THEN 5 $q \leftarrow 4$ 6 ELSE IF time = 'dinner' THEN 7 $q \leftarrow 2$ 8 ELSE 9 OUTPUT 'time not recognised' 10 ENDIF 11 FOR n \leftarrow 1 TO q 12 IF n < 3 THEN 13 DISPENSE_BISCUIT('chewies 14 ELSE 15 DISPENSE_BISCUIT('crunchy 16 ENDIF 17 ENDFOR	5')
0 3 . 1		de one lozenge which shows the line number where selection is	first used in
	ine a	algorithm shown in Figure 2 .	[1 mark]
	Α	Line number 2	
	В	Line number 4	
	С	Line number 9	
	D	Line number 12	
0 3 . 2		de one lozenge which shows the line number where iteration is f i algorithm shown in Figure 2 .	irst used in [1 mark]
	Α	Line number 1	
	в	Line number 8	
	С	Line number 11	
	D	Line number 13	

03.3	Shade one lozenge which shows how many times the subroutine DISPENSE_BISCUIT would be called if the user input is 'breakfast' in Figure 2.								
	rigu			[1 mark]					
	Α	1 subroutine call	\bigcirc						
	В	2 subroutine calls	0						
	С	3 subroutine calls	0						
	D	4 subroutine calls	0						
03.4		le one lozenge which shows ithm shown in Figure 2 .	the data type of the varial	ble time in the [1 mark]					
	Α	Date/Time	0						
	в	String	0						
	С	Integer	0						
	D	Real	0						
03.5	Stat with	e how many times the subro the parameter 'chewies'	utine DISPENSE_BISCU	UIT will be called ch' in Figure 2. [1 mark]					
		Turn over for the	next question						

0 4 A programmer has written a C# program that asks the user to input two integers and then output which of the two integers is the largest. Complete the program by filling in the gaps using the information in Figure 3. Each item in Figure 3 should only be used once. [5 marks] Figure 3 Console.Write num1 num2 output else if else < > double int string int num1; num2; Console.WriteLine("Enter a number: "); num1 = int.Parse(Console.ReadLine()); Console.WriteLine("Enter another number: "); num2 = int.Parse(Console.ReadLine()); if (num1 > num2) { Console.WriteLine(" _____ is bigger."); } else if (num1 num2) { Console.WriteLine(" is bigger."); } { Console.WriteLine("The numbers are equal."); }

Do not write outside the box 05Write a C# program that allows a taxi company to calculate how much a taxi
fare should be.The program should:

- allow the user to enter the journey distance in kilometres (no validation is required)
- allow the user to enter the number of passengers (no validation is required)
- calculate the taxi fare by

•

- charging £2 for every passenger regardless of the distance
- charging a further £1.50 for every kilometre regardless of how many passengers there are
- output the final taxi fare.

You **should** use meaningful variable name(s), correct syntax and indentation in your answer.

The answer grid below contains vertical lines to help you indent your code accurately.

	[7 marks]

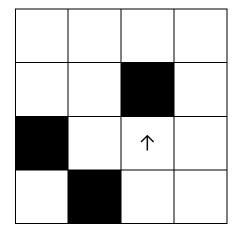
0 6 Write a C# program that inputs a password and checks if it is correct. Your program should work as follows: input a password and store it in a suitable variable • if the password entered is equal to secret display the message Welcome • if the password entered is not equal to secret display the message Not • welcome. You should use meaningful variable name(s), correct syntax and indentation in your answer. The answer grid below contains vertical lines to help you indent your code accurately. [5 marks]

Image: Section of the section of th				
Image:				
Image:				
Image: Section of the section of th				
Image:				
Image:				
Image: Section of the section of th				
Image:				
Image:				
Image:				
Image: Section of the section of th				
Image:				
Image:				
Image: Section of the section of th				
Image: Section of the section of th				
Image:	1		İ	
Image:				
Image:				
Image: Section of the section of th				
Image:	 			
Image: Section of the section of th				
Image: Section of the section of th				
Image:				
Image:				
Image: Section of the section of th				
Image: Section of the section of th				
Image:				
Image:				
Image: Section of the section of th				
Image: Section of the section of th				
Image:				
			ļ	

0 7	The algorithm in Figure 4 is a sorting algorithm.						
Array indexing starts at 0.Line numbers are included but are not part of the algorithm.							
	Figure 4						
	1 arr \leftarrow [4, 1, 6] 2 swapsMade \leftarrow false 3 WHILE swapsMade = false 4 swapsMade \leftarrow true 5 i \leftarrow 0 6 WHILE i < 2 7 IF arr[i+1] < arr[i] THEN 8 t \leftarrow arr[i] 9 arr[i] \leftarrow arr[i+1] 10 arr[i+1] \leftarrow t 11 swapsMade \leftarrow false 12 ENDIF 13 i \leftarrow i + 1 14 ENDWHILE 15 ENDWHILE						
07.1	State the data type of the variable swapsMade in the algorithm sho Figure 4.	own in [1 mark]					
0 7 . 2	The identifier swapsMade is used in the algorithm shown in Figure	9 4.					
	Explain why this is a better choice than using the identifier ${\tt s}.$	[2 marks]					

0 7 . 3	Shade one lozenge to show which of the following contains the false statement about the algorithm in Figure 4 .							
							[1	mark]
	Α	The algo	orithm u	uses a r	named constant.		0	
	в	The algo	orithm ι	uses inc	lefinite iteration.		0	
	С	The algo	orithm u	uses ne	sted iteration.		0	
0 7 . 4					the algorithm sh	own in Figure	4 . Some value	es
	nave	already l	been er	iterea.			[6 n	narks]
			arr					
		[0] [1] [2] swapsMade	i	t				
		4	1	6	false			
]

0 8	Write a C# program that inputs a character and checks to see if it is lowercase or not.
	Your program should work as follows:
	 gets the user to enter a character and store it in a suitable variable determines if the entered character is a lowercase character outputs LOWER if the user has entered a lowercase character outputs NOT LOWER if the user has entered any other character.
	You should use meaningful variable name(s), correct syntax and indentation in your answer.
	The answer grid below contains vertical lines to help you indent your code accurately.
	[7 marks]

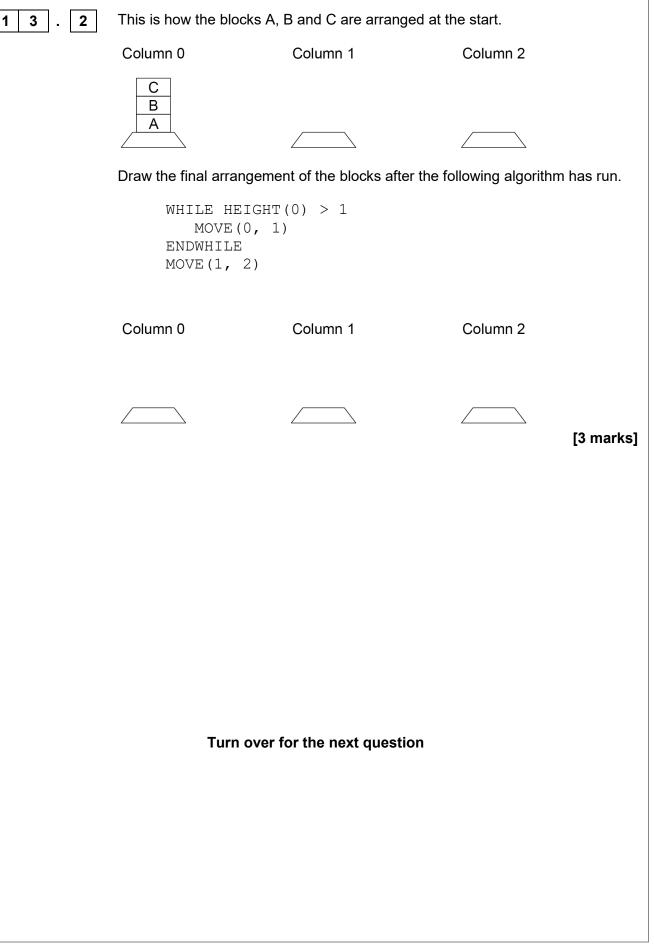

09	-	es the robot n the robot 90 ns the robot 90 returns true	squares f degrees l degrees if the robo	forward eft. right. ot is fac			
	square or returns fa		uare is ei	mpty.			
09.1	Draw the path of the robot through the grid below if the following program is executed (the robot starts in the square marked by the \uparrow facing in the direction of the arrow).						
	Forward(2) TurnLeft() Forward(1) TurnRight()						
	Forward(1	-)			[3 marks]		
	_						

 \uparrow

0 9 . 2 Draw the path of the robot through the grid below if the following program is executed (the robot starts in the square marked by the ↑ facing in the direction of the arrow). If a square is black then it contains an object.

```
WHILE ObjectAhead() = true
TurnLeft()
    IF ObjectAhead() = true THEN
       TurnRight()
       TurnRight()
       ENDIF
Forward(1)
ENDWHILE
Forward(1)
```

[3 marks]


Turn over for the next question

State two benefits of developing solutions using the structured approach. [2 marks] Fill in the blank arrays to show the steps involved in applying the bubble sort algorithm to the array [3, 5, 1, 4, 2]. You only need to show the missing steps where a change is applied to the array. [5 marks]

		Do not writ outside th
1 2	A developer is developing a program for a client. The developer is given the following instructions.	box
	"Many of my friends ask me to walk their dogs for them. All of these friends pay me to do this and the amount I get paid depends on how long I walk their dogs for. If they have more than one dog then I don't charge the owner any extra. I like to walk the dogs in the afternoon when the weather is normally best because I often get colds. I need you to help me keep track of how much I'm owed – fortunately for me all of my friends have different first names so it is really easy to tell them apart. I charge £10 for every 30 minutes of the walk (and I always round this up so 47 minutes would be two half-hour charges or £20).	
1 2 . 1	The developer needs to remove all of the unnecessary detail from the client's request. Shade the lozenge next to the name for this process.	
	[1 mark]	
	A Abstraction	
	B Conversion	
	C Decomposition	
	D Validation	
1 2 . 2	 The developer has decided that the following two points are the only important details from the client's request. The charge is based on time and not how many dogs are walked. 	
	• The charge is £10 every 30 minutes.	
	State two other relevant details that the developer has missed. [2 marks]	

1 3	The following subroutines different columns.	control the way th	at labelled blocks are plac	ced in
	BLOCK_ON	_TOP(column)	returns the label of the b on top of the column giv a parameter.	
	MOVE(source,	destination)	moves the block on top source column to the the destination colu	top of
	HE	IGHT(column)	returns the number of bl in the specified column.	ocks
1 3 . 1	This is how the blocks A,	B and C are arran	ged at the start.	
	Column 0	Column 1	Column 2	
	C B A			
	Draw the final arrangeme	ent of the blocks af	ter the following algorithm	has run.
	MOVE(0, 1) MOVE(0, 2) MOVE(0, 2)			
	Column 0	Column 1	Column 2	
				[3 marks]

Do not write outside the box

				Do not outside
1 3 . 3		nm using either pseudo-co blumn 0 to column 1.	de or a flowchart that will m	ove
	may assume there		locks start in column 0. You e block in column 0 at the st	
	The order of the blo	ocks must be preserved.		
			a block from one column to subroutine in your answer.	
	For example, if the	starting arrangement of th	ne blocks is:	
	Column 0	Column 1	Column 2	
	B			
	Then the final arrar	ngement should have bloc	k B above block A:	
	Column 0	Column 1	Column 2	
		В		
			[4 n	narks]

Do not write outside the A programmer has written the C# program in **Figure 5** to add up the numbers 1 4 box between one and five. Figure 5 int total = 0;for (int number = 1; number < 6; number++)</pre> { total = total + number; } Console.WriteLine(total); The program needs to be changed so that it also multiplies all of the numbers between one and five. Shade **one** lozenge next to the program that will do what the programmer wants. [1 mark] int total = 0; \bigcirc int product = 1; for (int number = 1; number < 6; number++)</pre> Α total = total + number; product = total * number; } Console.WriteLine(total); Console.WriteLine(product); int total = 0; \bigcirc int product = 1; for (int number = 1; number < 6; number++)</pre> В total = total + number; product = product * number; } Console.WriteLine(total); Console.WriteLine(product); int total = 0; $^{\circ}$ int product = 1; for (int number = 1; number < 6; number++) С total = total + number; product = product * total; } Console.WriteLine(total); Console.WriteLine(product); int total = 0; \bigcirc int product = 1;for (int number = 1; number < 6; number++)</pre> D total = total + number; product = (total + product) * number; } Console.WriteLine(total); Console.WriteLine(product);

1 5

A program has been written in C# to display all the odd integers between 1 and the largest odd number smaller than an integer entered by the user. The program is shown in **Figure 6**.

Figure 6

```
int odd = 1;
int number;
Console.Write("Enter an integer: ");
number = Convert.ToInt32(Console.ReadLine());
while (odd != Number)
{
   Console.WriteLine(odd);
   odd = odd + 2;
}
Console.WriteLine("Finished!");
```

The program works correctly if the integer entered by the user is an odd, positive integer. For example, if 7 is entered the program correctly displays the values 1, 3 and 5

The program does not work correctly if an odd integer less than 1 is entered by the user. For example, when -7 is entered the program should display the values 1, -1, -3 and -5 but it doesn't do this.

Using C# only, change the program code inside the while loop so that it will work correctly for any odd integer entered by the user.

[4 marks]

Figure 7 shows part of a program written in C#.

1

6

Figure 7

```
bool validChoice;
int choice;
validChoice = false;
while (validChoice == false)
{
   Console.Write("Enter your choice [1 - 10] ");
   choice = int.Parse(Console.ReadLine());
   if (choice >= 1 & choice <= 10)
   {
      validChoice = true;
   }
   else
   {
      Console.WriteLine("Invalid choice");
   }
}
Console.WriteLine("Valid choice");
```

Complete the following test plan for the code shown in **Figure 7**.

Test type	Test data	Expected result
Normal data	5	Valid choice message displayed
Invalid data		
Boundary data		

[2 marks]

Figure 8 shows a C# program that is being developed.

It is supposed to calculate and display the highest common factor of two numbers entered by the user.

The highest common factor of two numbers is the largest number that both numbers can be divided by without leaving a remainder.

Examples:

7

1

- the highest common factor of the numbers 6 and 9 is 3
- the highest common factor of 2 and 5 is 1

Line numbers are shown but are not part of the program code.

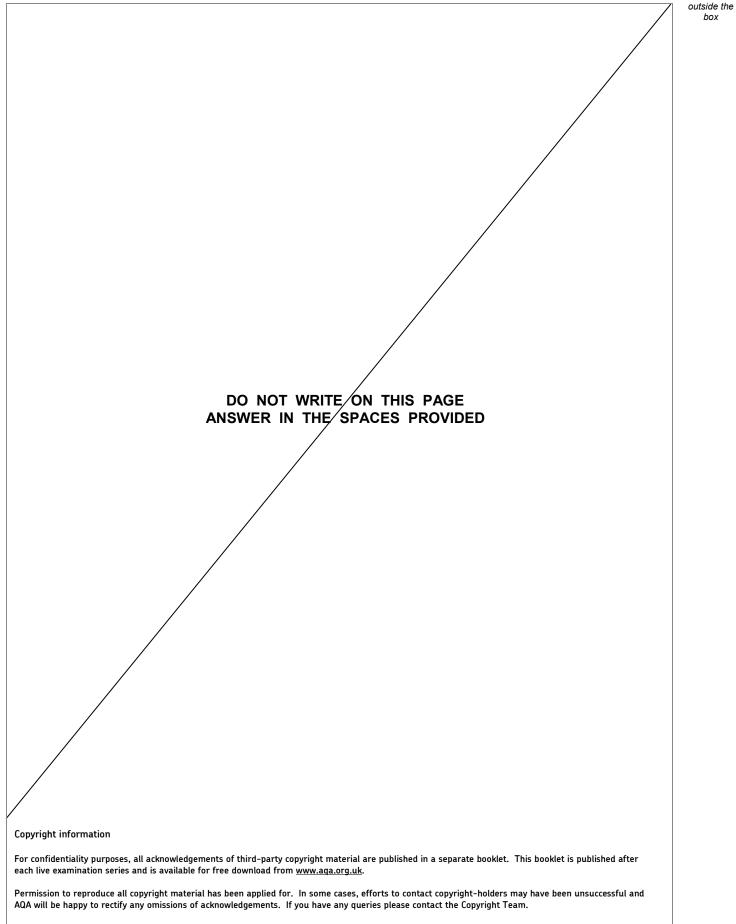
Figure 8

```
1
   int num1 = Convert.ToInt32(Console.ReadLine());
2
   int num2 = Convert.ToInt32(Console.ReadLine());
3
   int hcf = 1;
4
   int count = 1;
5
   while (count < num1)
6
   {
7
     if (num1 % count == 0 && num2 % count == 0)
8
     {
       hcf = count;
9
10
     }
11
     count = count + 1;
12 }
13 Console.WriteLine(hcf);
```

The highest common factor of two numbers is the largest number that both numbers can be divided by without leaving a remainder.

Examples:

- the highest common factor of the numbers 6 and 9 is 3
- the highest common factor of 2 and 5 is 1


The program in **Figure 8** works correctly sometimes but not always. When the user enters the numbers 4 and 6 it correctly outputs 2, but when the user enters the numbers 4 and 4 it should output 4 but it does not.

17.1	State the output from the program in Figure 8 when the user enters the numb and 4	oers 4
		[1 mark]
17.2	State the line number from the program in Figure 8 which contains the error t stops the program from sometimes working correctly.	that [1 mark]
17.3	Describe how the line of code identified in your answer to 17.2 should be cha that the program in Figure 8 will work correctly.	nged so [1 mark]
	Turn over for the next question	

1 8 Write a C# program that calculates an estimate of the braking distance in metres for a new model of go-kart that is travelling between 10 and 50 kilometres per hour (kph). Your program should: • keep asking the user to enter a speed for the go-kart until they enter a speed that is between 10 and 50 (inclusive) calculate the braking distance in metres by dividing the speed by 5 • • ask the user if the ground is wet (expect the user to enter yes if it is) if the ground is wet, multiply the braking distance by 1.5 • output the final calculated braking distance. • You should use meaningful variable name(s), correct syntax and indentation in your answer. The answer grid below contains vertical lines to help you indent you code accurately. [8 marks]

Ī			
ŀ			
ľ			
ľ			
ŀ			
Ī			
-			
ŀ			
-			
-			
L			

END OF QUESTIONS

Copyright $\ensuremath{\mathbb{C}}$ 2019 AQA and its licensors. All rights reserved.

Do not write