

Please write clearly in	า block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level **MATHEMATICS**

Paper 2

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Exam	iner's Use
Question	Mark
1	
2	
3 4	
5	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
TOTAL	

Section A

Answer all questions in the spaces provided.

1 A circle has centre (4, -5) and radius 6

Find the equation of the circle.

Tick (✓) one box.

[1 mark]

$$(x-4)^2 + (y+5)^2 = 6$$

$$(x+4)^2 + (y-5)^2 = 6$$

$$(x-4)^2 + (y+5)^2 = 36$$

$$(x+4)^2 + (y-5)^2 = 36$$

2 State the value of

$$\lim_{h\to 0}\frac{\sin{(\pi+h)}-\sin{\pi}}{h}$$

Circle your answer.

[1 mark]

 $\cos h$

-1

0

1

4	A	
	6.1 cm	
	$B \stackrel{\checkmark}{}$ 38° C	
	8.7 cm	
	The diagram shows a triangle ABC.	
	AB is the shortest side. The lengths of AC and BC are 6.1 cm and 8.7 cm respectively.	
	The size of angle ABC is 38°	
	Find the size of the largest angle.	
	Give your answer to the nearest degree.	
		[3 marks]

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

0 5

5	The binomial expansion of $(2 + 5x)^4$ is given by	
	$(2+5x)^4 = A + 160x + Bx^2 + 1000x^3 + 625x^4$	
5 (a)	Find the value of A and the value of B .	[2 marks]
5 (b)	Show that	
	$(2+5x)^4 - (2-5x)^4 = Cx + Dx^3$	
	where ${\cal C}$ and ${\cal D}$ are constants to be found.	[2 marks]

5 (c)	Hence, or otherwise, find		
		$\int \left((2+5x)^4 - (2-5x)^4 \right) dx$	[2 marks]

Turn over for the next question

6 (a) Asif notices that $24^2 = 576$ and 2+4=6 gives the last digit of 576

He checks two more examples:

$$27^2 = 729$$

$$2 + 7 = 9$$

$$29^2 = 841$$

$$2 + 9 = 11$$

Asif concludes that he can find the last digit of any square number greater than 100 by adding the digits of the number being squared.

Give a counter example to show that Asif's conclusion is **not** correct.

[2 marks]

6 (b) Claire tells Asif that he should look only at the last digit of the number being squared.

$$27^2 = 729$$

$$7^2 = 49$$

$$24^2 = 576$$

$$4^2 = 16$$

Using Claire's method determine the last digit of 23456789²

[1 mark]

6 (c)	Given Claire's method is correct, use proof by exhaustion to show that no snumber has a last digit of 8	
		[2 marks]
	Turn over for the next question	
	Turn over for the next question	

7 The curve $y = 15 - x^2$ and the isosceles triangle *OPQ* are shown on the diagram below.

Vertices P and Q lie on the curve such that Q lies vertically above some point (q, 0). The line PQ is parallel to the x-axis.

7 (a) Show that the area, A, of the triangle OPQ is given by

$$A = 15q - q^3$$
 for $0 < q < c$

where c is a constant to be found.

where t is a constant to be realia.	[3 marks

7 (b)	Find the exact maximum area of triangle OPQ.	
	Fully justify your answer.	[6 marks]
		[o marko]
	Turn over for the next question	

8 (b)	The graph of $y = \frac{1}{x^2}$ can be transformed onto the graph of $y = \frac{9}{x^2}$ using a stretch in one direction.
	Beth thinks the stretch should be in the <i>y</i> -direction.
	Paul thinks the stretch should be in the <i>x</i> -direction.
	State, giving reasons for your answer, whether Beth is correct, Paul is correct, both are correct or neither is correct.
	[3 marks]

Turn over for the next question

9	Given that	
	$\log_2 x^3 - \log_2 y^2 = 9$	
	show that	
	$x = Ay^p$	
	where A is an integer and p is a rational number.	
	where A is all integer and p is a rational number.	[4 marks]
	·	

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

1 5

Turn over ▶

10	A gardener has a greenhouse containing 900 tomato plants.
	The gardener notices that some of the tomato plants are damaged by insects.
	Initially there are 25 damaged tomato plants.
	The number of tomato plants damaged by insects is increasing by 32% each day.
10 (a)	The total number of plants damaged by insects, x , is modelled by
	$x = A \times B^t$
	where A and B are constants and t is the number of days after the gardener first noticed the damaged plants.
10 (a) (i)	Use this model to find the total number of plants damaged by insects 5 days after the gardener noticed the damaged plants.
	[3 marks]
	·
	·
10 (a) (ii)	Explain why this model is not realistic in the long term.
10 (a) (11)	[2 marks]
	·
	·

10 (b)	A refined model assumes the rate of increase of the number of plants damaged by
	insects is given by

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x(900 - x)}{2700}$$

10 (b) (i) Show that

$$\int \left(\frac{A}{x} + \frac{B}{900 - x}\right) \mathrm{d}x = \int \mathrm{d}t$$

when And Demonstration to be found	
where A and B are positive integers to be found.	
	[3 marks
	•

Question 10 continues on the next page

10 (b) (ii)	Hence, find t in terms of x . [5 marks]
10 (b) (iii)	Hence, find the number of days it takes from when the damage is first noticed until half of the plants are damaged by the insects. [2 marks]

Section B

Answer all questions in the spaces provided.

11 A moon vehicle has a mass of 212 kg and a length of 3 metres.

On the moon the vehicle has a weight of 345 N

Calculate a value for acceleration due to gravity on the moon.

Circle your answer.

[1 mark]

$$0.614 \,\mathrm{m \, s^{-2}}$$
 $1.63 \,\mathrm{m \, s^{-2}}$ $1.84 \,\mathrm{m \, s^{-2}}$ $4.89 \,\mathrm{m \, s^{-2}}$

$$1.63\,\mathrm{m\,s^{-2}}$$

$$1.84\,\mathrm{m\,s^{-2}}$$

$$89 \, \text{m s}^{-2}$$

A car is travelling along a straight horizontal road with initial velocity $u \, \text{m s}^{-1}$ 12

> The car begins to accelerate at a constant rate $a\,\mathrm{m}\,\mathrm{s}^{-2}$ for 5 seconds, to reach a final velocity of $4u \,\mathrm{m}\,\mathrm{s}^{-1}$

Express a in terms of u.

Circle your answer.

[1 mark]

$$a = 0.2u$$

$$a = 0.4u$$

$$a = 0.4u$$
 $a = 0.6u$

$$a = 0.8u$$

Turn over for the next question

13	In this question use $g=9.8\mathrm{ms^{-2}}$	
	A ball is projected from a point on horizontal ground with an initial velocity of at an angle θ above the horizontal.	of 7 m s ⁻¹
	The ball reaches a maximum vertical height of h metres above the ground.	
13 (a)	Show that	
	$h=2.5\sin^2 heta$	[3 marks]
13 (b)	Hence, given that $0^{\circ} \le \theta \le 60^{\circ}$, find the maximum value of h .	[2 marks]

13 (c)	Nisha claims that the larger the size of the ball, the greater the maximulation height will be.	um vertical
	State whether Nisha is correct, giving a reason for your answer.	[1 mark]
	Turn over for the next question	

	nas a dian	neter of Zor	iiii and a m		. graino.		
		length 160 in has the co	mm and a fix rrect mass.	ed load	of mass <i>m</i> g	rams are u	sed to
The rod re	ests with its	s midpoint c	n a support.				
A £2 coin above <i>A</i> .	is placed f	face down c	n the rod wit	h part of	its curved e	dge directl	у
			t inextensible own in the di		om a point c	lirectly belo	w the
					В		
	A 				m		
Given tha	t the rod is	horizontal a	and rests in (equilibriu	m, find m .		[3 mark
							_
		NOU bovo r			in to answer	part (a).	[1 mai
State an a	assumption	i you nave i	nade about t	ne £2 co	iii to answei		-
State an a	assumption		nade about t	ne £2 co			
State an a	assumption		nade about t	ne £2 co			
State an a	assumption		nade about t	ne £2 co	iii to answei		
State an a	assumption		nade about t	ne £2 co	iii to answei		
State an a	assumption	- you nave i	nade about t	ne £2 co	iii to answei		

15 A car is moving in a straight line along a horizontal road.

The graph below shows how the car's velocity $v \, \mathrm{m} \, \mathrm{s}^{-1}$ changes with time, t seconds.

Over the period $0 \le t \le 15$ the car has a total displacement of -7 metres.

Initially the car has velocity $0\,\mathrm{m\,s^{-1}}$

Find the next time when the velocity of the car is $0\mathrm{ms^{-1}}$	[4 marks]

16	Two particles, P and Q, move in the same horizontal plane.
	Particle P is initially at rest at the point with position vector $(-4\mathbf{i}+5\mathbf{j})$ metres and moves with constant acceleration $(3\mathbf{i}-4\mathbf{j})\mathrm{ms}^{-2}$
	Particle Q moves in a straight line, passing through the points with position vectors $(\mathbf{i} - \mathbf{j})$ metres and $(10\mathbf{i} + c\mathbf{j})$ metres.
	P and Q are moving along parallel paths.
16 (a)	Show that $c=-13$ [4 marks]
16 (b) (i)	Find an expression for the position vector of P at time t seconds. [1 mark]

16 (b) (ii)	Hence, prove that the paths of <i>P</i> and <i>Q</i> are not collinear.	[3 marks]
		[o marko]
	Turn over for the next question	

17	A particle is moving such that its position vector, \mathbf{r} metres, at time t seconds, is given by
	$\mathbf{r} = \mathbf{e}^t \cos t \mathbf{i} + \mathbf{e}^t \sin t \mathbf{j}$
	Show that the magnitude of the acceleration of the particle, $a \mathrm{m} \mathrm{s}^{-2}$, is given by
	$a = 2e^t$
	Fully justify your answer.
	[7 marks]
	
	

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

18	An object, O , of mass m kilograms is hanging from a ceiling by two light, inelastic
	strings of different lengths.

The shorter string, of length 0.8 metres, is fixed to the ceiling at A.

The longer string, of length 1.2 metres, is fixed to the ceiling at *B*.

This object hangs 0.6 metres directly below the ceiling as shown in the diagram.

18 (a)	Show that the tension in the shorter string is over 30% more than the tension longer string.	on in the
		[4 marks]
	·	

18 (b)	The tension in the longer string is known to be $2g$ newtons.		
	Find the value of m .		
		[4 marks]	
	Turn over for the next question		

19	In this	question	use $g =$	9.8 m s
19	ın ınıs	question	use $g =$	9.01118

A rough wooden ramp is 10 metres long and is inclined at an angle of 25° above the horizontal. The bottom of the ramp is at the point O.

A crate of mass 20 kg is at rest at the point A on the ramp.

The crate is pulled up the ramp using a rope attached to the crate.

Once in motion, the rope remains taut and parallel to the line of greatest slope of the ramp.

19 (a) The tension in the rope is 230 N

The crate accelerates up the ramp at $1.2\,\mathrm{m\,s^{-2}}$

Find the coefficient of friction between the crate and the ramp.	[7 marks]

19 (b) (i)	The crate takes 3.8 seconds to reach the top of the ramp. Find the distance <i>OA</i> . [3 marks]
19 (b) (ii)	Other than air resistance, state one assumption you have made about the crate in answering part (b)(i). [1 mark]
	END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 AQA and its licensors. All rights reserved.

