GCSE STATISTICS 8382/2H

Higher Tier Paper 2

Mark scheme

June 2022

Version: 0.1 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]
Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Statistics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

\mathbf{Q}	Answer	Marks	Comments
$\mathbf{1}$	$\frac{1}{16}$		B1

\mathbf{Q}	Answer	Marks	Comments
$\mathbf{2}$	Skewness	B1	

\mathbf{Q}	Answer	Marks	Comments
$\mathbf{3}$	61	B1	

Q	Answer	Marks	Comments
$\mathbf{4}$	Reliability	B1	

Q	Answer	Marks	Comments	
5(a)	Insufficient sample size or Gender (possibly) irrelevant or Unequal numbers of males and females or Data for one female is repeated (it seems)	B1		
	Additional Guidance			
	Only from some classmates			B1
	Hasn't included everyone in the class			B1

Q	Answer	Marks	Comments	
6(a)	Most/more people are against HS2 (than in favour of it)	B1	oe hypothesis (not question)	
	Additional Guidance			
	Most people will have negative opinions about HS2			B1
	People are against HS2			B1
	More older people are against HS2 than younger people			B1
	HS2 will be disliked (by locals)			B1
	The reason people oppose HS2 is b	se it affe	the countryside	B1
	Many people are unhappy with HS2			B1
	HS2 will affect the countryside			B0
	HS2 will affect housing			B0
	HS2 doesn't affect the environment			B0
	HS2 will affect house prices			B0
	I/Tom believe(s) most people are against HS2			B0
	HS2 will ruin the countryside. Most people will use HS2			B0
	The sacrifice of the countryside is worth less than HS2			B0

Q	Answer	Marks	Comments	
6(d)	Alternative method 1			
	Number the stations (0)1 to 29	B1	oe	
	Obtain five (two-digit) random numbers from the internet or other source to obtain the stations, disregarding repeats	B1	oe eg obtain five different/unique numbers using random number generator	
	Alternative method 2			
	Put all 29 station names in a hat	B1	oe	
	Draw out five at random without replacement	B1	oe eg draw out five different/unique names	
	Additional Guidance			
	Accept random name generator if ju eg Type all 29 names into random names without repeats	ng name generat	obtain five	B2
	Number the stations			B0
	Pick five using random number gen			B0
	Put 29 stations/names in a hat			B1
	Put all the names in a hat			B1
	Put names in a hat			B0

Q	Answer	Marks	Comments	
$\mathbf{*} \mathbf{6}(\mathrm{e})$ (i)	Convenience	B1	accept Opportunity or Judgement	
	Additional Guidance			
	Accept poor spellings	B0		
	Opportunity and systematic on answer line			

Q	Answer	Marks	Comments
$\mathbf{6 (e) (i i) ~}$	Will be asking rail travellers or quick/convenient/easy/cheap/efficient	B1	oe do not accept "convenient" here if "convenience" given in e(i)

Q	Answer	Marks	Comments	
6(e)(iii)	Will not be asking (m)any non-rail travellers	B1	oe comment that suggest widening the sample frame	
	Additional Guidance			
	May not be / is not representative			B1
	More likely to support HS2			B1
	Only on Saturday afternoon			B1
	Need to go on different days / at dif	time		B1
	Might all be from same train/group			B1
	Biased as the arrival time could be	able		B1
	Biased			B0
	Might all be male/female			B0
	Not asked the whole population			B0

Q	Answer	Marks	Comments	
6(e)(iv)	Many people are affected in other places (without stations)	B1	oe	
	Additional Guidance			
	So it's (more) representative of the	ation		B1
	To get more opinions			B1
	To broaden the data			B1
	To compare data (of those who hav	ation with	ose that don't)	B1
	Those that won't have a station will	have a diff	ent opinion	B1
	(Those) people will/may have differ	inions		B1
	They'd have an unbiased opinion			B0
	Need everyone's opinion			B0
	To avoid bias			B0

Q	Answer	Marks	Comments
$\mathbf{6 (f) (i)}$	Dual bar chart	B1	accept multiple bar chart

Q	Answer	Marks		
6(f)(ii)	$[124,129] \text { and }[64,69]$ or $[124,129]-60$ or $[64,69]+60$	M1	accept in hour please check	units stated) for workings
	Yes ticked, and correct subtraction of their values in range or Yes ticked and [124, 129]-60, with correct answer, compared to [64, 69] or Yes ticked and [64, 69] +60 , with correct answer, compared to [124, 129]	A1		
	Additional Guidance			
	127 and 65 seen. Yes, 62 minutes is about an hour (subtraction implied)			M1A1
	127 and 65 seen. Yes, it is about an hour (answer to subtraction not seen)			M1A0
	$127-65=62$ (no decision)			M1A0
	It is 59 minutes which is about an hour so Li Na is correct (no evidence)			MOAO

Q	Answer	Marks	Comments
7(a)	$[1978,1980]$	B1	must be a year (natural number)
	$[250,260]$ or [2500, 3200]	B1	accept monthly or annual total
	Additional Guidance		
	Do not allow any follow through from the year to the estimate		

Q	Answer	Marks	Comments	
7(b)	Reference to cyclic nature of data, eg roughly every $[10,12]$ years there is a peak (trough) in the number of sunspots	B1	oe	
	Additional Guidance			
	The number of sunspots has decreased over the years			B0
	There are peaks and troughs			B0
	The data follows a pattern of up and down variation			B0

Q	Answer	Marks	Comments
7(c)	Calculate (or plot) 12-point moving averages	B2	B1 reference to moving averages but not 12-point accept 'rolling average' for 'moving average'

Q	Answer	Marks	Comments
8	54 in the D only area	B1	
	1 in the area outside the three circles	B1	
	0 in the central intersection of all three circles	B1	
	21 in BnDnL' and 21 in LnDnB'	B1	
	A total of 3 for the three numbers in the top three areas	B1ft	ft 100 - the sum of their five values
	Additional Guidance		
	Their 5 values must be integers (not negative) for the follow through mark		

Q	Answer	Marks	Comments
9(a)	Alternative method 1		
	$\frac{1}{5}$	M1	
	$\frac{1}{5}+\frac{4}{5} \times \frac{1}{4}$	M1dep	$\frac{1}{5}+\frac{1}{5}$ or $\frac{1}{5} \times 2$ unsupported is M1 M0
	$\frac{2}{5}$	A1	oe accept $4 / 10=2 / 5$ seen with little or no working
	Alternative method 2		
	Lists all the possible pairs for the last two players (either 10 unique pairs or 20 with either order)	M2	M1 lists at least 5 unique pairs or 10 with either order
	$\frac{2}{5}$	A1	oe

Q	Answer	Marks	Comments		
9(b)(i)	This uses all the available data or This is a census	B1			oe
	Additional Guidance	B0			
	The more data you use the more accurate it is	B0			
	Gives most data				

Q	Answer	Marks	Comments	
9(b)(ii)	Uses more recent data (as it will be more relevant) (for A, B or C) or Uses a reasonable sample size (for B or C)	B1	oe	
	Additional Guidance			
	Do not allow reference to small sample size for A as is this is not an appropriate sample size			
	B or C - uses less data			B1
	A - uses less data			B0
	Condone any reference to $5,20,100$ or all of the games instead of A, B, C or D as the option choice. If an option is not chosen, check the workings space.			

Q	Answer	Marks	Comments
10(a)(ii)	The data are discrete	B1	oe

Q	Answer	Marks	Comments	
10(b)	$($ Median Forest $A)=1$	B1ft	ft cumulative graph	
	(IDR Forest A) $=3$	B1ft	ft cumulative graph	
	The median is higher so there are more plants (on average) in forest B or There are more plants on average in forest B (as the median is higher)	B1ft	oe	
	There is a larger/wider spread of the number of plants in Forest A (as the IDR is higher)	B1ft	oe	
	Additional Guidance			
	If the median or the IDRs are the same, allow comments that the medians or IDRs are similar			
	If the median and/or IDR is correct in the answer space, ignore any contradiction on the graph			
	Comparison comments cannot be awarded if there are no median or IDR scores calculated			
	Answers should include an interpretation of the median / IDR in context. Plants must be seen in either response.			
	They cannot compare the range/IQR instead of the IDR or the mean instead of the median.			
	Accept reference to units			
	Ignore irrelevant comments as long as not contradictory. eg There are more plants in Forest B as the median and IDR are higher			B1
	The number of plants in Forest A is less consistent/less varied			B1
	There are more plants in Forest B			B0
	There is a larger median of plants in Forest B			B0
	There is a larger range of plants in Forest A			B0
	The average is higher in Forest B (no context)			B0
	The spread is larger in Forest A (no context)			B0

Q	Answer	Marks		
11(c)(i)	(4.01) is the expected mass/weight in kg of a baby born on its due date	B1	oe 4010	
	Additional Guidance			
	Units of mass must be seen			
	Condone reference to a new-born to mean born on its due date			
	It is the initial/starting/beginning mass/weight in kg of the baby			B1
	It is the initial/starting/beginning mass/weight of the baby			B0

Q	Answer	Marks	Comments	
11(c)(ii)	(0.04) is the increase in the baby's mass in kg for every additional day	B1	oe 40 g	
	Additional Guidance			
	Units of mass must be seen			
	It is how much the baby's mass/weight increases in kg per day			B1
	How much the mass/weight changes per day			B0

Q	Answer	Marks	Comments
11(c)(iii)	Line of best fit that is - from x values of -49 to 10 - straight - passes through (-40, [2.3,2.5]) and (0, 4.01) and (10, [4.3.4.5])	B2	B1 a straight line with a positive gradient that passes through (0 , 4.01) strict $\pm \frac{1}{2}$ square tolerance for plotting ($0,4.01$)
	Additional Guidance		
	For the line of best fit, mark intention to be straight		

Q	Answer	Marks	Comments	
11(d)	Sam can be estimated as it is interpolation	B1	oe accept yes/valid with justification e.g. It is within the range of the data	
	their value from their line of best fit or $3.4(1) \mathrm{kg}$	B1ft	oe must be straight line if using their line of best fit	
	Nim should not be estimated as her data are outside the range (of the scatter graph)/ it would be extrapolation	B1	oe accept no/invalid with justification condone saying cannot be estimated condone the mention that it can be estimated but it would be unreliable due to extrapolation oe do not accept 'it goes off the graph'	
	Additional Guidance			
	Check the graph for workings and a	timate		
	For the interpolation comment, allow	ntion of	ability for yes	
	Do not penalise if estimates given a	g as un	bility/extrapola	nced
	Yes, interpolation			B1
	Yes, it is within the data			B1
	Interpolation			B0
	Extrapolation comment, allow mention of unreliability for no			
	No, the trend/pattern may not continue			B1
	The trend/pattern may not continue			B0
	There is no data at that point			B0
	The line (of best fit) does not go that far			B0

Q	Answer	Marks	Comments
12(a)	Alternative method 1		
	800×50 or 40000	M1	
	0.96×800 or 768	M1	oe
	their 768×300 or 230400	M1dep	oe dep on $2^{\text {nd }}$ method mark
	their 230400 - their 40000	M1dep	oe dep on $3^{\text {rd }}$ method mark
	190400	A1	
	Alternative method 2		
	$\begin{aligned} & 0.96 \times 800 \text { or } 768 \\ & \text { or } \\ & 0.04 \times 800 \text { or } 32 \end{aligned}$	M1	oe
	their 768×250 or 192000	M1dep	oe dep on $1^{\text {st }}$ method mark
	their (800 - their 768) $\times 50$ or 1600	M1dep	oe dep on $1^{\text {st }}$ method mark
	their 192000 - their 1600	M1dep	oe dep on all previous method marks
	190400	A1	
	Alternative method 3		
	0.96×250 or 240	M1	oe
	0.04×50 or 2	M1	oe
	their (240-2) or 238	M1dep	oe dep on M1M1
	their (240-2) or 238×800	M1dep	oe dep on $3^{\text {rd }}$ method mark
	190400	A1	
	Alternative method 4		
	0.04×300 or 12	M1	oe
	their (250-12) or 238	M2dep	oe eg 300-62
	their 238×800	M1dep	oe dep on M3
	190400		
	Additional Guidance		
	There may be an attempt at more than one alternative method. Award the highest mark(s)		

Q	Answer	Marks	Comments	
12(b)(i)	It is poor practice to take 5 in a row or The sample needs to be spread out more	B1	oe	
	Additional Guidance			
	This is more about 5 in a row and not a poor sample size			
	Ignore any reference to other sampling methods			
	Not effective as 5 were chosen one after another			B1
	Poor sample size			B0
	Small sample so not representative/reliable			B0

Q	Answer	Marks	Comments
12(b)(ii)	$0.96^{4} \times 0.04$ or $0.0339(7 \ldots)$	M1	oe
	$5 \times 0.96^{4} \times 0.04$ or $5 \times 0.0339(7 \ldots)$	M1dep	
	0.17 or better	A1	oe $0.169(869 \ldots)$
	Additional Guidance		
	If 0.17 or $0.169(869 \ldots)$ seen with no incorrect working scores full marks		

Q	Answer	Marks	Comments	
13(a)	Positive correlation between the marks scored on the two papers	B1	oe eg positive agreement/ relationship/association between the rankings of the marks. eg students who did well on one paper, tended to do well on the other	
	Additional Guidance			
	Ignore any adjectives describing the strength of the relationship			
	Some context should be included, eg reference to marks or papers			
	They do well on both tests			B0
	They do well			B0
	Positive correlation			B0
	The papers are closely related			B0

Q	Answer	Marks	Comments
13(b)(i)	Will be nearer to 1 or increases	B1	oe

Q	Answer	Marks	Comments
13(b)(ii)	$1-\frac{6\left(\sum\right) d^{2}}{5(25-1)}=0.8$	M1	oe for forming a correct equation accept any variable for d or $\left(\sum\right) d^{2}$
	$\left(\sum\right) d^{2}=4$	A1	accept any variable for d or $\left(\sum\right) d^{2}$
	$(1-) \frac{6 \times \text { their } 4}{6(36-1)}$	M1dep	condone $\frac{6 \times(\text { their } d)^{2}}{6(36-1)}$ must be clear what their $\sum d^{2}$ or d is
	[0.88, 0.9] or $\frac{31}{35}$	A1ft	oe ft for their $\sum d^{2}$ (must be ≥ 0) provided $0<$ SRCC <1
	Additional Guidance		
	For full marks, condone $1-\frac{6 \times 2^{2}}{6(36-1)}=[0.88,0.9]$ or $\frac{31}{35}$		
	If ($1-$) is seen then it must be in the correct place in the formula for both M marks eg $\frac{1-6 \sum d^{2}}{5(25-1)}(=0.8)$ scores MOM0 unless recovered		

Q	Answer	Marks	Comments
14(b)	(Median =) 2	B1	
	(Mean =) 5.1	B1	
	$1^{2}+1^{2}+3^{2}+\ldots$ or $\sum x^{2}=927$	M1	workings may not be seen if calculator used
	(standard deviation $=$) 8.166 \ldots	A1	8.2 or better
	Substitution of their values into the skew formula	M1dep	dep on M1
	$1.138 \ldots(=1.14)$ or $1.139 \text { (= 1.14) }$	A1	
	Additional Guidance		
	Do not allow any values substituted into the skew formula unless correct values/workings seen		
	Check the list of data values for evidence of workings to find the mean/median. Allow any indication of the median eg crossings out/circling		
	If candidates work backwards from +1.14 , the maximum score possible is for correctly calculating the median and/or mean		
	For the $2^{\text {nd }} \mathrm{A} 1$, they must show at least 3 decimal places		

Q	Answer	Marks	Comments
14(c)	C	B1	

[^0]: Copyright information
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Copyright © 2022 AQA and its licensors. All rights reserved.

