GCSE
STATISTICS
8382/1H
Higher Tier Paper 1
Mark scheme
June 2021
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

## Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 AQA and its licensors. All rights reserved.

## Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student's answer read through the answer and annotate it (as instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

## Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in the student's answer for that level. If it meets the lowest level then go to the next one and decide if it meets this level, and so on, until you have a match between the level descriptor and the answer. With practice and familiarity you will find that for better answers you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in small and specific parts of the answer where the student has not performed quite as well as the rest. If the answer covers different aspects of different levels of the mark scheme you should use a best fit approach for defining the level and then use the variability of the response to help decide the mark within the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

## Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate marks can help with this. The exemplar materials used during standardisation will help. There will be an answer in the standardising materials which will correspond with each level of the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can compare the student's answer with the example to determine if it is the same standard, better or worse than the example. You can then use this to allocate a mark for the answer based on the Lead Examiner's mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be exhaustive and you must credit other valid points. Students do not have to cover all of the points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

## Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Statistics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe $\quad$ Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) $\quad$ Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

## Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

## Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

## Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

## Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

## Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

## Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

## Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

## Work not replaced

Erased or crossed out work that is still legible should be marked.

## Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

## Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

## Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\frac{1}{64}$ | B1 |  |


| $\mathbf{Q}$ | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| $\mathbf{2}$ | Sample frame | B 1 |  |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | C | B 1 |  |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| $\mathbf{4}$ | C | B1 |  |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| 5(a) | Curry sauce | B1 |  |


| Q | Answer | Marks |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 5(b) | Any two valid reasons, eg <br> (It's not representative as) they've only asked adults <br> The sample size is (too) small (It's biased as) they've only asked people at fish and chip shops (fish and chips are available elsewhere) <br> Each area will have a different population <br> There isn't a response from all areas <br> Not all side orders were an option / No other box | B2 |  |  |
|  | Additional Guidance |  |  |  |
|  | Only asked 670 adults Only asked adults Only asked 670 <br> Asked adults <br> Asked 670 |  |  | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \text { B0 } \\ & \text { B0 } \end{aligned}$ |


| Q | Answer | Marks | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 6(a) | Any reasonable hypothesis relating Year 7, Year 11 and homework <br> eg <br> Year 11 receive more homework than Year 7 | B1 | oe |  |
|  | Additional Guidance |  |  |  |
|  | Allow older (students) to imply Year 11, younger (students) to imply Year 7 |  |  |  |
|  | Y11 students get more homework (than Y7 students) |  |  | B1 |
|  | Older students get more homework (than younger students) |  |  | B1 |
|  | 16-year-olds have more homework (than 11-year-olds) |  |  | B1 |
|  | Year 11 spend more time on their homework than Year 7 |  |  | B1 |
|  | Year 11 homework takes longer (on average) than Year 7 homework |  |  | B0 |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :---: |
| 6(b) | All Year 11 and All Year 7 <br> students (in Tom's school) | B1 | oe |
|  | Additional Guidance |  |  |
|  | All Year 11 and Year 7 (students) | B1 |  |
|  | The Year 11 and Year 7 students | B1 |  |
|  | The Year 11s and Year 7s | B1 |  |
|  | Year 11 and Year 7 students | B0 |  |
|  | (All) students (at Tom's school) | B0 |  |



| Q | Answer | Marks |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 6(d) | Any two valid problems, eg <br> There is no time frame given <br> 'How much' is unclear hours/pieces/nights <br> There are no options given (so answers might be hard to collate) | B2 | oe <br> B1 any one |  |
|  | Additional Guidance |  |  |  |
|  | It is an open question meaning data is harder to process |  |  | B0 |
|  | Reference to some people not getting any homework |  |  | B0 |
|  | There isn't a place to answer the question (implies no response section) |  |  | B1 |


| Q | Answer | Marks |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 6(e) | On average, Year 11 have (3 hours) more homework (than Year 7) <br> or <br> On average, Year 7 have (3 hours) less homework (than Year 11) | B1 | oe but must state 'on average' or similar, eg generally |  |
|  | Additional Guidance |  |  |  |
|  | Condone spend/spent for received/receive |  |  |  |
|  | Year 11 have more homework than Year 7 |  |  | B0 |



| Q | Answer | Marks | Comments |  |
| :---: | :--- | :---: | :---: | :---: |
| $\mathbf{6 ( g )}$ | The secondary data is for 15-year- <br> olds whereas Tom's data is for <br> Year 11 (who are 15 and 16-year- <br> olds) <br> or <br> The chart could be from several <br> years ago | B1 | oe |  |
|  | Additional Guidance |  |  | B0 |


| Q | Answer | Marks | Comments |  |
| :---: | :--- | :--- | :--- | :--- |
|  | Tom's as the internet chart had no <br> source (so we have no idea <br> where the data has come from) <br> or <br> The internet data as we don't <br> know how Tom eventually <br> collected his data <br> or <br> 6(h) | B1 | oe |  |
| The internet data as it is likely to <br> have been collected from more <br> than one school in those countries <br> (whereas Tom's is just from one <br> school) | Additional Guidance |  |  |  |
|  | The internet data as it has been collected from more than one school <br> in those countries <br> (this is not known for sure) | B0 |  |  |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| 7(a) | $1000 \times 0.003$ | M1 | oe |
|  | 3 | A1 |  |


| Q | Answer | Marks | Comments |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7(b) | 24.6 and 0.2 seen as part of a calculation | M1 |  |  |  |
|  | 123 | A1 |  |  |  |
|  | Additional Guidance |  |  |  | M1A0 |
|  | 1.23 (implies $24.6 \div 0.2)$ |  |  |  |  |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| 7(c) | Two correct reasons <br> eg the data is out of date/15 years old (reference to age of data) <br> eg It might be hard to know whether you are a 'heavy smoker' or not (reference to categorisation) <br> eg The chance of developing lung cancer will also be conditional on age.... The chance that a 90 year old heavy smoker will get lung cancer will be smaller than for 40 year old heavy smoker (reference to the generalisation of the Information) <br> eg The estimates do not take into account how long it is since they quit smoking (or how long they smoked before they quit) <br> eg The estimates do not take into account what type of cigarettes people smoke. | B2 | oe <br> B1 one correct reason |


| Q | Answer | Marks |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 8(a) | I : (The number of) minutes after 9am | B1 | oe |  |
|  | D : waiting time (to be served) | B1 | oe |  |
|  | Additional Guidance |  |  |  |
|  | The time after 9am <br> The number of staff |  |  | $\begin{aligned} & \text { B0 } \\ & \text { B0 } \end{aligned}$ |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| 8(b)(i) | $y=-0.06+0.023 x$ | B1 |  |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :---: |
| $8\left(\begin{array}{l}\text { 5 plots in the rectangle bounded by the } \\ \text { coordinates (210, 5), (270, 5), (270, 4) } \\ \text { and (210, 4) }\end{array}\right.$ | B1 | Must be exactly 5 plots added |  |
|  | 6 plots between 270 and 360 minutes <br> (inclusive) in a strong negative correlation | B1 | oe <br> Must be exactly 6 plots added |
|  | Additional Guidance |  |  |
|  | If more or less than 11 points added in total, then <br> maximum of B1 awarded |  |  |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :---: |
| 8(b)(iii) | Any period of exactly two hours <br> between 11.30am and 2pm | B1ft | Do not accept incorrect time notation |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| 8(c) | The data is for one day only | B1 | Oe |
|  | Take further samples on other days | B1dep | oe <br> eg Take more samples over the next few weeks |
|  | Additional Guidance |  |  |
|  | Ask all the customers <br> Ask at a different time <br> Any reference to before 9am |  | $\begin{aligned} & \text { B0B0 } \\ & \text { BOBO } \\ & \text { BOBO } \end{aligned}$ |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :--- |
| 9(a) | Median $=1$ <br>  <br> Upper Quartile $=2$ <br> and <br> Lower Quartile $=1$ | M1 | oe |
|  | IQR $=2-1=1$ | A1 | Work for M1 must be seen |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :--- |
| 9(b) | Cumulative frequencies 190, 335, 425, <br> 485,500 | B1 | Allow one error, which may be <br> compounded <br> May be implied by correct answer |
|  | Cumulative step polygon drawn | All points correct and joined <br> $(1,190),(2,335),(3,425),(4,485)$, <br> $(5,500)$ | B1 |
|  | Ignore graph before (1, 190) and <br> after (5, 500) |  |  |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| 9(c) | Second sample : $\min =1, \max =5$, median $=2$ | B1 | Probably seen in box plot |
|  | Second sample : $\mathrm{LQ}=1, \mathrm{UQ}=3$ | B1 | Possibly seen in box plot (LQ implied by lack of left whisker) |
|  | Two correct box plots drawn | B1ft | ft their answer to (a) |
|  | Both box plots labelled and scale correctly marked and labelled as 'Number of rewards' | B1 | Accept Sample A and Sample B for Sample 1 and Sample 2 |
|  | Additional Guidance |  |  |
|  | If only one box plot drawn, treat as | sample |  |
|  | Answers in 'frequencies' instead of |  | B0B0B0B0 |


| Q | Answer | Marks |  |
| :---: | :---: | :---: | :---: |
| 9(d) | Their LQ - $1.5 \times$ their IQR or their UQ $+1.5 \times$ their IQR | M1 | $1-1.5 \times 2$ <br> or $3+1.5 \times 2$ |
|  | ```Their LQ-1.5 \(\times\) their IQR and their \(U Q+1.5 \times\) their IQR``` | M1 | $1-1.5 \times 2$ <br> or $3+1.5 \times 2$ |
|  | Correct evaluation of their correct calculations and the correct decision | A1ft | Below - 2 or |
|  | Additional Guidance |  |  |
|  | Values may be seen on box plot or in part (b) <br> Condone use of values from their box plot in part (c) if frequency used If only one unlabelled box plot in part (c) treat as second sample |  |  |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :--- |
| $\mathbf{9 ( e )}$ | Correct decision and reason for median <br> target | B1ft | ft their medians |
|  | Correct decision and reason for <br> interquartile range target | B1ft | ft their IQRs |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :--- |
| 10(a) | The higher the finishing position, the <br> lower the resting heart rate <br> or <br> The higher the finishing position, the <br> higher the resting heart rate | B1 | oe <br> Allow hypothesis to be either way <br> around |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 0 ( b )}$ | Sight of $\mathrm{n}=15$ | B 1 | May be seen in calculation |
|  | $(1-) \frac{6 \times 60}{15\left(15^{2}-1\right)}$ | M1 |  |
|  | $0.892 \ldots$ or $0.893(=0.89)$ | A1 | At least 3 decimal places |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 0 ( c )}$ | Appropriate conclusion based on <br> answer to parts (a) and (b) <br> or <br> 0.89 shows strong positive correlation | B1ft |  |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :---: | :---: |
| 11(a)(i) | To enable the tagged squirrels to mix <br> fully with the others | B1 | oe |
|  | Additional Guidance |  |  |
|  | To allow the squirrels to return home <br> To ensure a fair/unbiased result | B1 |  |
|  |  |  |  |


| Q | Answer | Marks |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 11(a)(ii) | As the population size may change due to births and/or deaths or migration <br> or <br> The tags will probably come off over time | B1 | oe |  |
|  | Additional Guidance |  |  |  |
|  | To make sure there are as few changes in the population as possible Squirrels may leave the forest |  |  | $\begin{aligned} & \text { B0 } \\ & \text { B0 } \end{aligned}$ |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :--- |
| 11(b) Correct equation with sample and <br> population proportions equated <br> eg $\frac{11}{40}=\frac{50}{n}$ <br> eg $x=\frac{50 \times 40}{11}$ <br>  181.8 or better <br>  M1 | oe |  |  |
|  | A1 or 182 | B1ft | Their decimal rounded or truncated to <br> a whole number of squirrels with M1 <br> awarded |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| 12(a) | Take additional samples | B1 | oe ldea of 'warning' not 'action' |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| 12(b) | Stop production <br> or <br> Have the machine checked/repaired or <br> Reset the machine | B1 | oe Idea of 'action' not 'warning' |
|  | Additional Guidance |  |  |
|  | Restart the machine |  | B1 |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| 12(c) | 1 plot for each sample (10 in total), all <br> between the warning lines | B1 |  |


| Q | Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |
| 13(a)(i) | Geometric mean | B1 | oe |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 3 ( a ) ( \text { (ii) }}$$\sqrt[5]{1.067 \times 1.013 \times 1.008 \times 1.005 \times 1.126}$ <br> or <br> $1.0427 \ldots$ | M1 |  |  |
|  | $104.27(\%) \ldots$ or 1.0427 or $4.27 \ldots$ <br> and <br> 4.3 | A1 | Must show to at least 2dp |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :--- |
| 13(a)(iii) | $200000 \times 1.043^{4}$ | M1 | oe <br>  <br>  |
|  | $[236410,236684]$ | For 1.043 allow 1.0427 or better |  |


| Q | Answer | Marks |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 13(b) | $[25,29](\div 360)$ | M1 |  |  |
|  | $\begin{aligned} & \frac{5}{72} \text { or } \frac{13}{180} \text { or } \frac{3}{40} \text { or } \frac{7}{90} \\ & \text { or } \frac{[25,29]}{360} \\ & \text { or }[0.0694,0.0806] \\ & \text { or }[6.94 \%, 8.06 \%] \end{aligned}$ | A1 | oe |  |
|  | Additional Guidance |  |  |  |
|  | If correct answer seen, do no incorrect simplification | r workin | her than an |  |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :--- |
|  | One correct calculation for an angle <br> or one correct angle value <br> eg $\frac{60}{160} \times 360$ or 135 <br> eg $\frac{38}{160} \times 360$ or 85.5 <br> eg $\frac{22}{160} \times 360$ or 49.5 <br> eg $\frac{40}{160} \times 360$ or 90 | M1 | oe <br> may be implied by correct answer |
| A3(c) | A1l angles correct | M1 | oe <br> May be implied by correct answer |
| Correct full method for calculating new <br> radius <br> eg $\sqrt{2} \times 4$ | May be implied by correct answer |  |  |


| Q | Answer | Marks | Comments |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 3}$ 13(d) | One correct comparison between the <br> proportion of types of houses | B1 |  |
|  | Additional Guidance |  |  |
|  | There are more bungalows on Maisy's estate than the new one (not a <br> proportion) <br> There is a higher proportion of bungalows | B0 |  |

