GCSE
STATISTICS
8382/1F
Foundation Tier Paper 1
Mark scheme
June 2022
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Statistics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Marks	Comments
$\mathbf{1}$	$\frac{1}{6}$	B1	

\mathbf{Q}	Answer	Marks	Comments
$\mathbf{2}$	Cleaning	B1	

Q	Answer	Marks	Comments	
3	Skew	B1		
	Additional Guidance			
	Accept skew within the sentence, if two answers are given, the circled word takes precedence			

Q	Answer	Marks	Comments
$\mathbf{4}$	500	B1	

Q	Answer	Marks		
5(a)	Qualitative variable identified	B1		used, ence
	Additional Guidance			
	Condone the data value included with the variable, eg Base used Teapot Base Teapot Colour Red Red Colour Teapot			$\begin{aligned} & \text { B1 } \\ & \text { B0 } \end{aligned}$

Q	Answer	Marks	Comments	
5	Quantitative variable identified	B1	eg Selling price / Cost to make / Number of flowers used	
	Additional Guidance			
	Condone the data value included with the variable, eg Cost to make $=£ 4.20$ $£ 4.20$	B1		

Q	Answer	Marks	Comments
5(b)(ii)	Discrete ticked	Dependent on having identified a discrete value in 5(b)(i) eg Selling price / Cost to make / Number of flowers used	
	Additional Guidance		
	E4.20 in 5(b)(i) and discrete ticked	B1	

Q	Answer	Marks	Comments
5(c)	Correct setup of pictogram with labels of Rose, Daisy, Lily and Carnation	B1	
	3 symbols for Rose or 2 symbols for Lily	B1	
	2.25 symbols for Daisy or 3.75 symbols for Carnation	B1	
	Fully correct pictogram with symbols vertically or horizontally aligned	B1	SC1 11 calculated or a total of 11 pictures
	Additional Guidance		
	Mark intention with any labels and alignment		
	Ignore any totals at the end of rows/columns		

Q	Answer	Marks	Comments	
	(Roses =) 9 and (Daisies =) 4 and No, because $4 \times 2=8$ or No, because $9 \div 2=4.5$ or No, because $9 \div 4=2.25$ or No, because $9-4=5($ not 4$)$ or No, because $4+4=8(\operatorname{not} 9)$	B2	oe B1 No and (Roses =) 9 or or No, Roses is mo Daisies or No, Daisies is les Roses	$\text { es =) } 4$ double half of
5(d)	Additional Guidance			
	The 9 and/or the 4 may be seen	the tally		
	Ignore any non-contradictory or No ticked and $4 \times 2=8$, not 9 ,	nt calcul 2 in the	s or statements, eg king	B2
	No ticked and $9 \div 2=4.5$, you	e half of	ower	B2
	Evaluations do not always have No, because $9 \div 2$ does not eq	en for B		B2
	No ticked and $4 \times 2=8$, not 9 No ticked and $4 \times 2=8$			$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{~B} 1 \end{aligned}$
	Do not accept tallies instead of No, 2 x IIII does not equal III III	r, eg		B0

Q	Answer ${ }^{\text {a }}$ Marks		Comments	
6(b)	$11+12 \text { or } 23$ or $11+12+4+2 \text { or } 29$	M1		
	$\frac{23}{29}$	A1	oe eg 0.79 or 79\%	
	Additional Guidance			
	Ignore any attempt to convert to decimal or percentage once the correct fraction has been seen, eg$\frac{23}{29}=73.9 \%$			M1A1
	Decimals or percentages must be correct to 2sf or better, eg 23 or 29 in working, answer 79.3% 23 or 29 in working, answer 80%			$\begin{aligned} & \text { M1A1 } \\ & \text { M1A0 } \end{aligned}$

Q	Answer	Marks	Comments
$\mathbf{7}$	10.5	B1	

Q	Answer	Marks	Comments
$8 \mathbf{8}$ 8(a)	Horizontal axis label of 'Donations'	B1	
	Vertical axis label of 'Shoppers'	B1	
	Plot at (4200, 250)	B1	$\pm \frac{1}{2}$ square tolerance

\mathbf{Q}	Answer	Marks	Comments
$\mathbf{9}$	Scatter diagram	B1	

Q	Answer	Marks	Comments
$\mathbf{*} \mathbf{1 0 (b) (i) ~}$	Choropleth map	B1	
	Additional Guidance		
	Condone choropleth	B1	
	Condone choropleth chart/diagram/graph, etc	B1	

Q	Answer	Marks	Comments	
10(b)(ii)	(Yes,) it supports the hypothesis	B1ft	oe ft their	
	Additional Guidance			
	Must have a hypothesis in 10(a) to comment on in 10(b)(ii)			
	It's (likely to be) correct			B1
	Yes, it's correct Yes, it is mostly correct Yes, it might be correct Yes			B1
				B1
				B0
				B0

Q	Answer	Marks	Comments	
10(c)(ii)	The highest value on the map is 45	B1	oe	
	Additional Guidance			
	Condone use of the word average, eg The highest average birth rate on the map is 45			B1
	Honduras is shaded grey so can't be 55.8 Honduras is shaded grey which is 10.1-15 / 15.1-20 / 20.1-30 Honduras is shaded grey			B1 B1 B0
	Honduras is an outlier			B0

Q	Answer	Marks	Comments
10(f)(i)	8.5	B1	
	their $8.5 \times 80000000(\div 1000)$ or $680000000(\div 1000)$	M1	oe their 8.5 must be a birth rate from the table or 22.8
	680000	A1	
	Additional Guidance		
	Embedded answer		B1M1A0

Q	Answer	Marks	Comments	
10(f)(ii)	Population and/or birth rate is rounded	B1	oe	
	Additional Guidance			
	The given population is appro			B1
	The population is ever changi			B0
	Some births have not been re			B0

Q	Answer	Marks	Comments	
$\mathbf{1 0 (g)}$	The source(s) (of his data)	B1	oe	
	Additional Guidance			
	The author	B1		
	A link to the articles (the website link)	B1		
	Where he got the data from (ambiguous)	B0		

Q	Answer	Marks	Comments
$\mathbf{1 2}$	B	B1	

Q	Answer	Marks	Comments	
13(a)	Two correct statements from: U certificates rose and have fallen again or U certificates have increased (slightly) PG certificates have risen 12 certificates have risen 15 certificates have risen 18 certificates have remained fairly steady (or risen and have fallen again) or 18 certificates have decreased (slightly) With the exception of 2013, the number of ' 15 ' rated movies released was always bigger than any of the other rated movies released There were always fewer 18 rated movies (released than any other rating of movie)	B2		
	Additional Guidance			
	Answers referring to just 2008 and 2018 can still score B2, eg (From 2008 to 2018,) 12 certificates have risen, 18 certificates have decreased (slightly)			B2
	Two correct statements can be given in one comment, eg PG certificates have risen, 15 certificates have risen			B2
	Do not ignore incorrect statements for B2, eg 12 certificates have risen, 15 certificates have risen, 15 certificates were always the highest			B1
	Answers must refer to a certificate, eg The total number of films released went down in 2009			B0
	15 certificates were nearly always the highest 15 certificates were often the highest 15 certificates were sometimes the highest 15 certificates were always the highest			$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B0 } \\ & \text { B0 } \end{aligned}$

Q	Answer	Marks		
13(d)	The values do not add up to 100% (so must have been rounded)	B1	oe eg The values add must have be	1\% (so
	Additional Guidance			
	The percentages have been rounded to the nearest whole number It's been rounded to the nearest whole number (ambiguous)			$\begin{aligned} & \mathrm{B} 1 \\ & \text { B0 } \end{aligned}$
	It's an estimate			B0

Q	Answer	Marks	Comments	
13(e)(i)	The value for 18 certificate films is $0(\%)$	B1	oe	
	Additional Guidance			B1
	Nobody watched the 18 certificate films			

Q	Answer	Marks		
13(e)(ii)	The films may have been shown but no-one went to see them (or very few did) or The value of 0% is actually not exactly zero, it was rounded down	B1	oe	
	Additional Guidance			
	Maybe the film rated 18 (was shown but) didn't appeal to anyone			B1
	This was only one week, 18 certificate films could have been on last week (missed the point)			B0

Q	Answer	Marks	Comments	
15(b)	Any correct comparison of populations in the two years, eg The population (aged 20-29) is greater (in 1961 than in 1851)	B1	oe eg The number of males (or females) (aged 20-29) is greater (in 1961 than in 1851)	
	Any correct comparison between genders, eg In 1851, there were more females than males (in the 20-29 age group) or (In 1961,) there were more males than females (in the 20-29 age group) or The gender gap / range has decreased or The gender gap has reversed	B1	oe	
	Additional Guidance			
	Condone any incorrect calculations with a correct statement			
	Ignore any non-contradictory or irrelevant statements			
	The males have gone up, the females have gone up, the males have gone up by more than the females			B1B0
	There's a bigger population (now) There was a smaller population before They've both more than doubled There was a smaller population in 1851 There was a smaller population			$\begin{aligned} & \text { B1 } \\ & \text { B0 } \end{aligned}$

Q	Answer	Marks	Comments	
16(a)(i)	$\frac{150000-135000}{1000} \times 0.05$	M1	oe	
	0.75	A1	oe eg 75%	
	Additional Guidance			
	Do not ignore further work, eg $15 \times 0.05=0.75$, answer 99.25			M1A0
	0.75\%			M1A0

Q	Answer	Marks	Comments	
16(a)(ii)	their $0.75 \times$ their 0.75	M1	oe	
	$\frac{9}{16}$ or 0.5625 or 0.56 or 0.563 or 56.25% or 56% or 56.3%	A1ft	oe equivalent fraction ft their 16(a)(i)	
	Additional Guidance			
	Answers must be correct to 2sf or better			
	Ignore any attempt to round after the correct answer seen, eg$0.5625=0.562$			M1A1

Q	Answer	Marks	Comments	
16(a)(iii)	Selling in one month is independent to selling in another	B1	oe eg months are independent	
	Additional Guidance			
	Condone use of 'probability'/'chance' for 'risk'			
	The risk each month is the same The risk stays the same over time (implies each month) The risk is (still) the same			B1 B1 B0
	The risk of not selling in month one is the same as the risk of not selling in month two			B1
	The risk of not selling in one month is the same as not selling in two months			B0
	She doesn't sell the house in the first month			B0
	The price stays the same			B0

Q	Answer	Marks	Comments
16(b)(i)	Alternative method 1 - Starting with £135000		
	$\begin{aligned} & 1 \div 0.05 \text { or } 20 \\ & \text { or } 20000 \end{aligned}$	M1	oe
	(£)155000	A1	
	Alternative method 2 - Starting with £150000		
	$5(\times 1000)$ or 5000	M1	oe
	(£)155000	A1	

Q	Answer	Marks	Comments
17(b)	5	B1	

Q	Answer	Marks	Comments
	Any correct statement referring to the trend of both from 2010 to 2018 eg,	B1	oe
both private and public sectors increased (from 2010 to 2018)	B1	oe	
	Any correct statement referring to pay before and after 2014 eg, before 2014, public was higher but after 2014 private was higher	B1	

Additional guidance for this question is on the next page

Q	Answer	Marks	Comments	
17(d)	$\frac{100}{120}(\times 100)$ or 0.83(3...)	M1	oe	
	83(.3...)	A1	oe	
	83(.3...) and (Jim's) first statement is correct and (Jim's) second statement is incorrect	A1	oe	
	Additional Guidance			
	Condone use of \%			
	Ignore $\frac{120}{100}$ (may be seen as an attempt to validate the first statement)			
	83 and this is not 80 (to the nearest whole number)			M1A1

