

Please write clearly in	ո block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	ノ

GCSE PHYSICS

Foundation Tier

Paper 2

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- a protractor
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

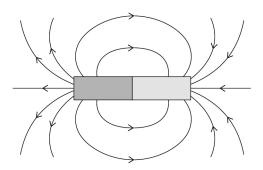
For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Answer a	all	questions	in	the s	spaces	provided.
,	~	9400000			opacce	provided.

- 0 1 When two magnets are close together they exert a force on each other.
- 0 1. 1 Complete **Table 1** to show if the magnets would attract or repel.

[2 marks]

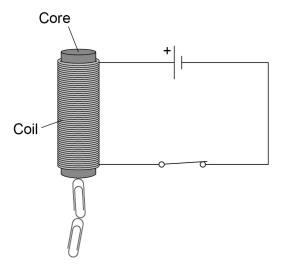
Tick (\checkmark) one box in each row.


Table 1

	Attract	Repel
S N S N		
N S N		
S N S		

0	1	. 2	2	Figure 1 shows	s the magnetic field	around a bar magnet.
---	---	-----	---	----------------	----------------------	----------------------

Figure 1


Which statements are true for the magnetic field shown in Tick (\checkmark) two boxes.	Figure 1?	[2 marks]
The magnetic field gets weaker further from the magnet.		
The magnetic field is strongest at the poles.		
The magnetic field is uniform away from the poles.		
The magnetic field lines all meet at a single point.		
The magnetic field lines point from south to north.		

Question 1 continues on the next page

Figure 2 includes an electromagnet.

Choose the answer from the box.

Figure 2

0 1.3	Which metal is used Tick (✓) one box.	to make the core of the electromagnet?	[1 mark]
	Aluminium		
	Copper		
	Iron		
	Magnesium		
0 1 . 4	Complete the senter	nce.	

		[1 mark]
coil	metal core	paper clip

The switch is closed. There is a current in the _____.

0 1.5	The number of turns on the coil is increased.	The current remains the same.	outsi b
	How does this affect the strength of the magnetic Tick (✓) one box.	etic field around the electromagnet? [1 mark]	
	The magnetic field would be stronger.		
	The magnetic field would stay the same.		
	The magnetic field would be weaker.		
0 1.6	The metal core was removed. The current rem	mains the same.	
	How does this affect the strength of the magne		
	Tick (✓) one box.	[1 mark]	
	The magnetic field would be stronger.		
	The magnetic field would stay the same.		
	The magnetic field would be weaker.		8
	Turn over for the next qu	estion	

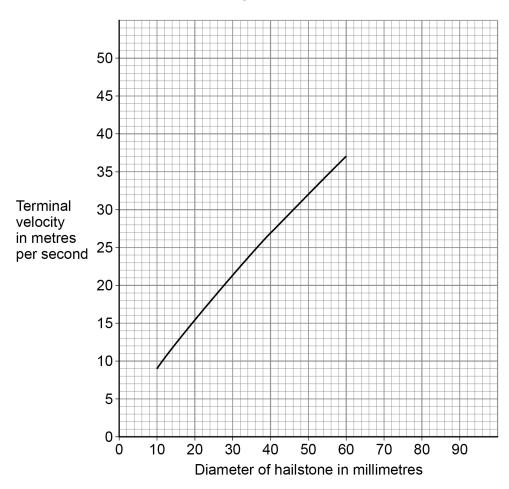
0 2

Hailstones are small balls of ice. Hailstones form in clouds and fall to the ground.

Figure 3 shows different-sized hailstones.

Figure 3

	and the second		
0 2 . 1	Which force causes the late of the late o	hailstones to fall to the ground?	[1 mark]
	Air resistance		
	Gravitational force		
	Magnetic force		
	Tension		


0 2 . 2	As the hailstones begin to fall they accelerate.	
	Which force increases as the hailstones accelerate?	l-1
	Tick (✓) one box. [1 mar	ĸj
	Air resistance	
	Gravitational force	
	Magnetic force	
	Tension	
0 2 . 3	After a short time hailstones fall at terminal velocity.	
	Which of the following statements is true at terminal velocity?	
	Tick (✓) one box.	k]
	The hailstones begin to slow down.	
	The mass of the hailstones increases.	
	The resultant force on the hailstones is zero.	
	Question 2 continues on the next nage	
	Question 2 continues on the next page	

A scientist investigated how the terminal velocity of hailstones varies with their diameter.

Figure 4 shows the results.

Figure 4

0 2 . 4 Estimate the terminal velocity for a hailstone with a diameter of 80 mm.

Show how you obtain your answer.

[2 marks]

Terminal velocity = _____ m/s

0 2 . 5	Give one reason why a hailstone with a large diameter has a greater terminal velocities than a hailstone with a smaller diameter. Tick (✓) one box. It has a greater power.	
	It has a greater temperature.	
	It has a greater weight.	
	Question 2 continues on the next page	

After falling, the hailstone hits the ground. box Figure 5 shows the forces acting on the hailstone at the moment it hits the ground. Figure 5 0.63 N 0.15 N What is the magnitude of the resultant force on the hailstone in Figure 5? [1 mark]

Tick (✓) one box.		
0.15 N		
0.48 N		
0.63 N		
0.78 N		

0 2.7	What is the direction of the resultant force on the hailstone in Figure 5 ?	[1 mark]

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

0 3	The Sun is at the centre of our solar system.		
0 3.1	What type of object is the Sun? [1 mark]		
0 3.2	What is the name of the galaxy our solar system is part of? [1 mark] Tick (✓) one box.		
	Andromeda		
	Milky Way		
	Sombrero		
	Tadpole		

Table 2 gives information about some of the moons in our solar system.

Table 2

Moon	Radius in kilometres
Ganymede	2630
Titan	2570
Europa	1560
Charon	606

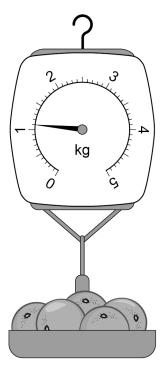
0 3.3	What is a moon?	[1 mark]
0 3.4	A student researched the radius of some planets in the solar system.	
	radius of largest dwarf planet = 1190 km radius of smallest planet = 2440 km	
	The student made the following conclusions:	
	dwarf planets are always smaller than moons planets are always bigger than moons.	
	Give one reason why each of the student's conclusions is wrong.	
	Use the data given above and in Table 2 .	[2 marks]
	1	
	2	

Question 3 continues on the next page

	Do not write outside the box
loon	
marks]	
1 mark]	

	The Earth's Moon and the International Space Station both orbit the Earth.	
0 3.5	Give one other similarity and one difference between the orbit of the Earth's and the orbit of the International Space Station.	Moon [2 marks]
	Similarity	
	Difference	
0 3.6	Very few people have been to the International Space Station.	
	Suggest one reason why very few people have been to the International Space Station.	[1 mark]

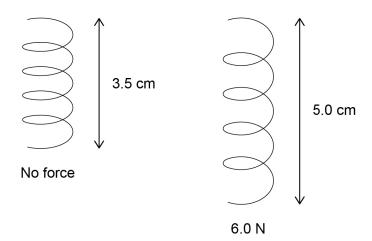
Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED



0 4 Figure 6 shows the weight of an orange acting from a point labelled X. Figure 6 0 4 What name is given to point **X** in **Figure 6**? [1 mark] Tick (✓) one box. Centre of force Centre of mass Centre of balance Centre of weight 0 4 . Weight and mass are not the same. The relationship between weight and mass for an object can be written as: weight ∝ mass Which sentence describes the relationship between weight and mass? [1 mark] Tick (✓) one box. Weight is approximately equal to mass. Weight is directly proportional to mass. Weight is less than mass.

Figure 7 shows a balance used to measure the mass of 5 oranges.

Figure 7


0 4.3	All 5 of the oranges have the same mass.	
	Determine the mass of 1 orange.	[2 marks]
	Mass =	kg
0 4.4	Calculate the weight of 1 orange.	
	gravitational field strength = 9.8 N/kg	
	Use the equation:	
	weight = mass × gravitational field strength	[2 marks]
	Weight =	N

The balance shown in **Figure 7** contains a spring.

Figure 8 shows the spring with no force acting on it and with a force of 6.0 N acting on it.

Figure 8

0 4.5 What is the extension of the spring when a force of 6.0 N acts on it?

[1 mark]

Tick (✓) one box.

0.015 m	
---------	--

0 4. **6** Calculate the spring constant of the spring.

Use the equation:

spring constant =
$$\frac{\text{force}}{\text{extension}}$$

[2 marks]

0 4.7	What will happen to the spring when the force is removed? [1 mark]	Do not write outside the box
		10
	Turn over for the next question	

0 5	Ultraviolet and visible light are both parts of the electromagnetic spectrum.					
0 5.1	How does the speed of ultraviolet in a vacuum compare to the speed of visible light in a vacuum?					
	Tick (✓) one bo	x .				[1 mark]
	Ultraviolet trave	ls at a faster s	speed than vis	ible light.		
	Ultraviolet trave	ls at a slower	speed than vi	sible light.		
	Ultraviolet trave	ls at the same	e speed as vis	ible light.		
0 5.2	Figure 9 shows	parts of the e	electromagneti Figure 9	c spectrum.		
Radio wave	s A	В	С	D	X-rays	Gamma rays
	Which letters represent the positions of ultraviolet and visible light in the electromagnetic spectrum?					[2 marks]
	Ultraviolet					
	Visible light					

0 5.3 Table 3 shows the range of wavelengths for different types of ultraviolet.

Table 3

Туре	Range of wavelength in nanometres
Ultraviolet A (UVA)	315–400
Ultraviolet B (UVB)	280–315
Ultraviolet C (UVC)	100–280

Determine which type of ultraviolet shown in Table 3 has the largest range of wavelengths.

type of ultraviolet.	
	[3 marks]
Type of ultraviolet with the largest range of wavelengths	

Question 5 continues on the next page

Figure 10 shows how different types of ultraviolet are absorbed by the ozone layer in the Earth's atmosphere.

Table 4 shows the relative ionising power from each type of ultraviolet.

Figure 10

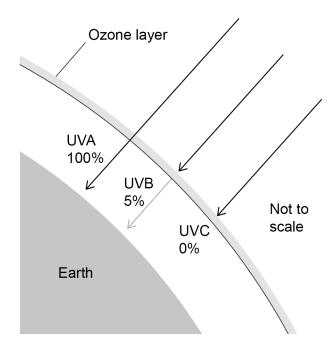


Table 4

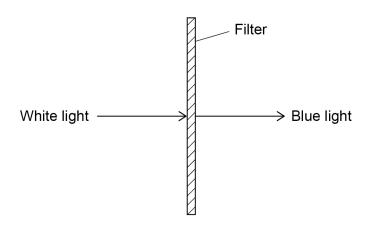
Туре	Relative ionising power
UVA	Low
UVB	Medium
UVC	High

0 5.4 Explain the importance of the ozone layer in reducing the risk to people from all types of ultraviolet.

Use	Figure	10	and	Table	4.

	[4 marks]

0	5	5	The Sun emits visible	light.


A student concludes that visible light is **not** absorbed by the ozone layer.

Give one piece of evidence that shows the student's conclusion is correct.

[1 mark]

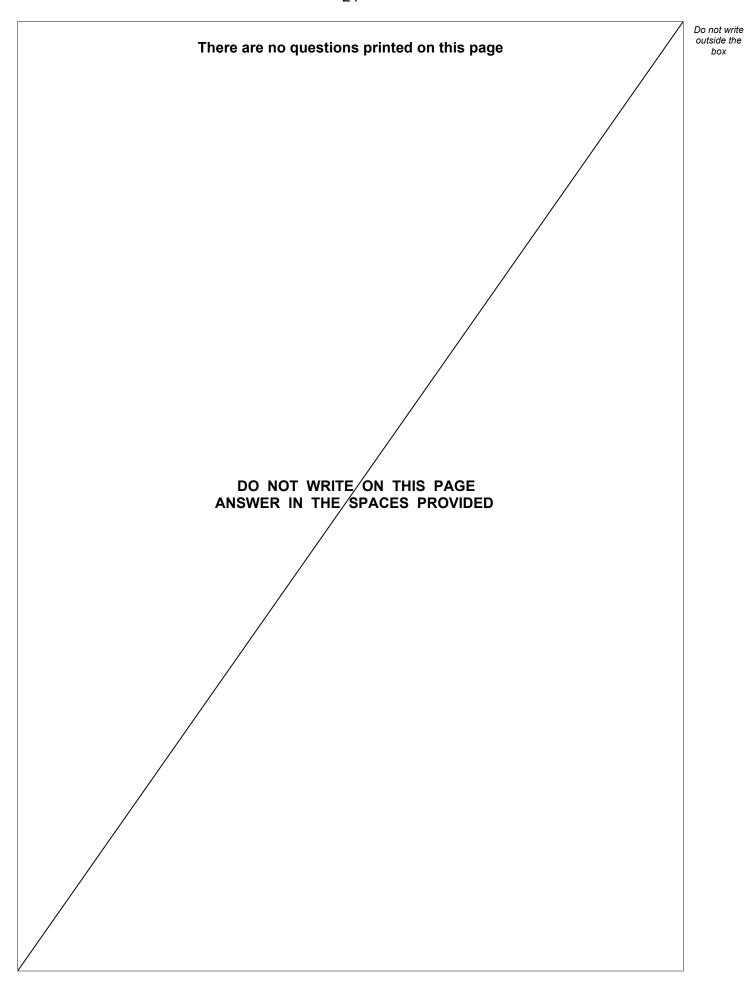
0 5.6 Figure 11 shows white light incident on a colour filter.

Figure 11

Complete the sentence.

Choose the answers from the box.

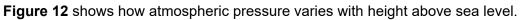
[2 marks]

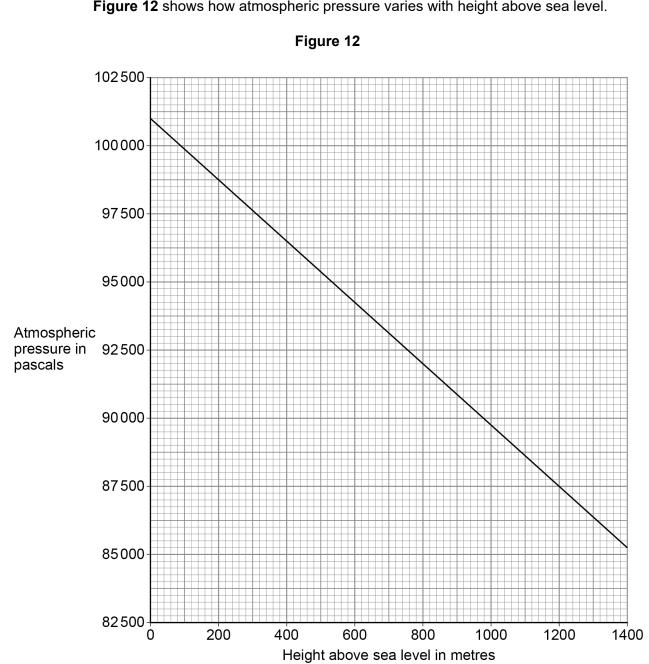

absorbed	radiated	reflected	refracted	transmitted

When white light is incident on the filter, only blue light is _____

and all other colours of light are ______ .

13





0 6	The Earth is surrounded by an atmosphere.	Do not write outside the box
0 6.1	The radius of the Earth is 6400 km. Which of the following could be an approximate depth of the Earth's atmosphere?	
	Tick (✓) one box. [1 mark]	
	100 km	
	6400 km	
	100 000 km	
	640 000 km	
0 6.2	What state of matter is most of the Earth's atmosphere?	
	Tick (✓) one box. [1 mark]	
	Gas	
	Liquid	
	Solid	
	Question 6 continues on the next page	

	Do not write outside the box
ark]	
— Pa	
Э	
ark]	
Pa	
rks]	

0 6.3	The highest point above sea level in England is the top of a mountain called Scafell Pike.
	The height above sea level of Scafell Pike is 978 m.
	Determine the atmospheric pressure at the top of Scafell Pike.
	Use Figure 12.
	[1 mark]
	Atmospheric pressure =Pa
0 6.4	Determine the difference between the atmospheric pressure at sea level and at the top of Scafell Pike.
	Use Figure 12 and your answer from Question 06.3
	[1 mark]
	Difference in atmospheric pressure =Pa
0 6.5	A student climbs Scafell Pike.
	Why does the atmospheric pressure decrease as the student climbs higher?
	Tick (✓) two boxes. [2 marks]
	The air exerts a greater force on the student.
	The density of the air decreases.
	The mass of air above the student decreases.
	The temperature of the air increases.
	The volume of air above the student increases.
	Question 6 continues on the next page

0 6 . 6 Figure 13 shows a mountain lake.

Figure 13

The lake has a surface area of 2000 m².

Atmospheric pressure exerts a force of 188 000 000 N on the surface of the lake.

Calculate the atmospheric pressure at the surface of the lake.

Use the equation:

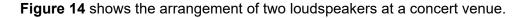
pressure =
$$\frac{\text{force}}{\text{area}}$$

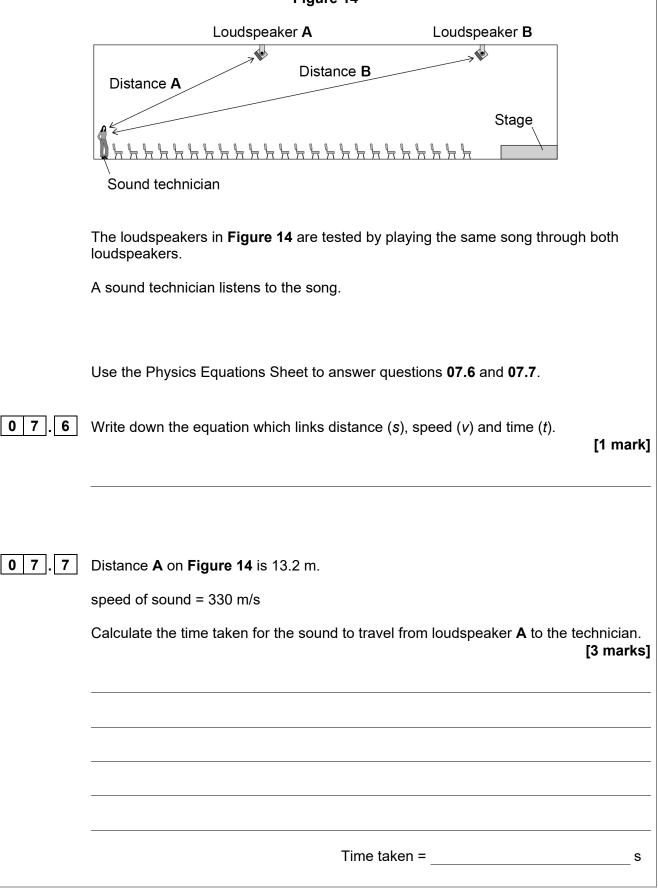
[2 marks]

A 4 I	D-
Atmospheric pressure =	Pa

Atmospheric pressure = _____

0 7	Sound travels as longitudinal waves.	Do not write outside the box
0 7.1	Complete the sentences.	
	Choose the answers from the box. [2 marks]	
	amplitude frequency speed wavelength	
	The distance between the centre of one compression of a sound wave and the centre of the next compression is called the	
	The number of waves passing a point each second is called the	
0 7.2	Complete the sentence. Choose the answer from the box. [1 mark]	
	opposite perpendicular parallel	
	In a longitudinal wave, the oscillations areto the direction of energy transfer.	
	to the direction of energy transfer.	
	Question 7 continues on the next page	


0 7.3	A sound wave has a frequency of 8.0 kHz.	Do not write outside the box
	Which of the following is the same as 8.0 kHz?	
	Tick (✓) one box. [1 mark]	
	0.0080 Hz	
	8.0 Hz	
	8000 Hz	
	800 000 Hz	
0 7.4	Calculate the period of a sound wave with a frequency of 8.0 kHz.	
	Use the Physics Equations Sheet. [2 marks]	
	Period =s	
		l


			31			
0 7.5	Calculate the wa	velength of a sou	ınd wave with a fre	equency of 6600 H	0	o not write outside the box
	speed of sound =	= 330 m/s				
	Use the equation	n:				
		wavelengt	$h = \frac{\text{speed}}{\text{frequency}}$			
	Choose the unit	from the box.			[3 marks]	
		kg	m	N		
		Wavelength	=	Unit		

Question 7 continues on the next page

Figure 14

0 7.8	The sound from each loudspeaker travels at the same speed.	Do not v outside box
	For the sound technician to hear the song clearly, the sound from loudspeaker B should be emitted slightly before the sound from loudspeaker A .	
	Explain why. [3 marks]	
		16

Turn over for the next question

0 8

Figure 15 shows an electric super-car.

Figure 15

0 8. 1 The battery in an electric car needs to be recharged.

Suggest **two** factors that affect the distance an electric car can travel before the battery needs to be recharged.

[2 marks]

1			

2

	35	
	Use the Physics Equations Sheet to answer questions 08.2 and 08.3 .	Do not write outside the box
0 8.2	Write down the equation which links acceleration (a), change in velocity (Δv) and time taken (t). [1 mark]	
0 8 . 3	The maximum acceleration of the car is 20 m/s². Calculate the time taken for the speed of the car to change from 0 m/s to 28 m/s at its maximum acceleration. [3 marks]	
	Time taken = s	
	Question 8 continues on the next page	

0 8.4	In a trial run, the car accelerates at 10 m/s² until it reaches its final velocity.	
	distance travelled by the car = 605 m	
	initial velocity of the car = 0 m/s	
	Calculate the final velocity of the car.	
	Use the Physics Equations Sheet.	[3 marks]
		-
	Final velocity =	m/s

	Use the Physics Equations Sheet to answer questions 08.5 and 08.6 .	Do not w outside t box
0 8.5	Write down the equation which links distance (s) , force (F) and work done (W) . [1 mark]	
0 8 6	When travelling at its maximum speed the air resistance acting on the car is 4000 N.	
0 0 . 0	Calculate the work done against air resistance when the car travels a distance of 7.5 km at its maximum speed.	
	[3 marks]	
	Work done = J	13

Turn over for the next question

0 9

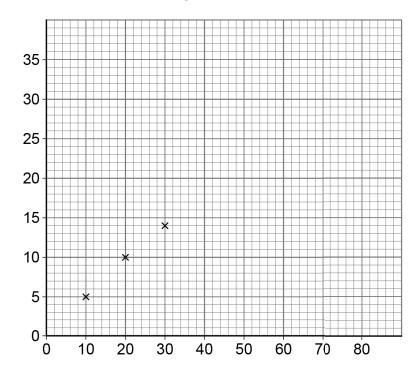
A student used a ray box to shine a ray of light through air into a glass block.

The student investigated how the angle of refraction varied with the angle of incidence.

Table 5 shows the results.

Table 5

Angle of incidence in degrees	Angle of refraction in degrees
10	5
20	10
30	14
40	19
50	23
60	26
70	28
80	29


0 9 . 1	Describe a method the student could have used to obtain the results in Table 5 .		
	Your answer may include a labelled diagram.	[6 marks]	

0 9. 2 Figure 16 is an incomplete graph of the results.

Figure 16

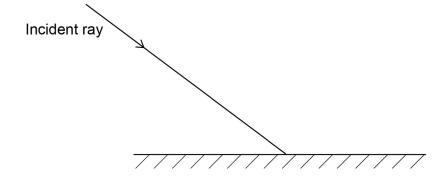
Complete Figure 16 using data from Table 5.

- Label the axes.
- Plot the remaining data.
- Draw a line of best fit.

[4 marks]

Question 9 continues on the next page

0 9 . 3

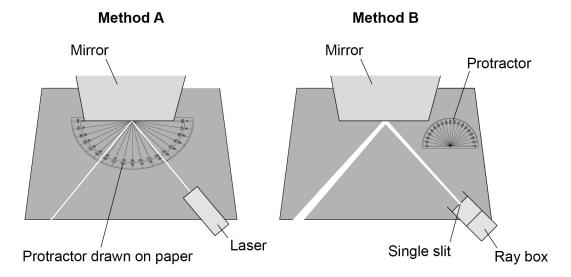

Complete the ray diagram in **Figure 17** to show the reflection of light from the surface of a plane mirror.

You should:

- draw the normal line
- draw the reflected ray.

[2 marks]

Figure 17

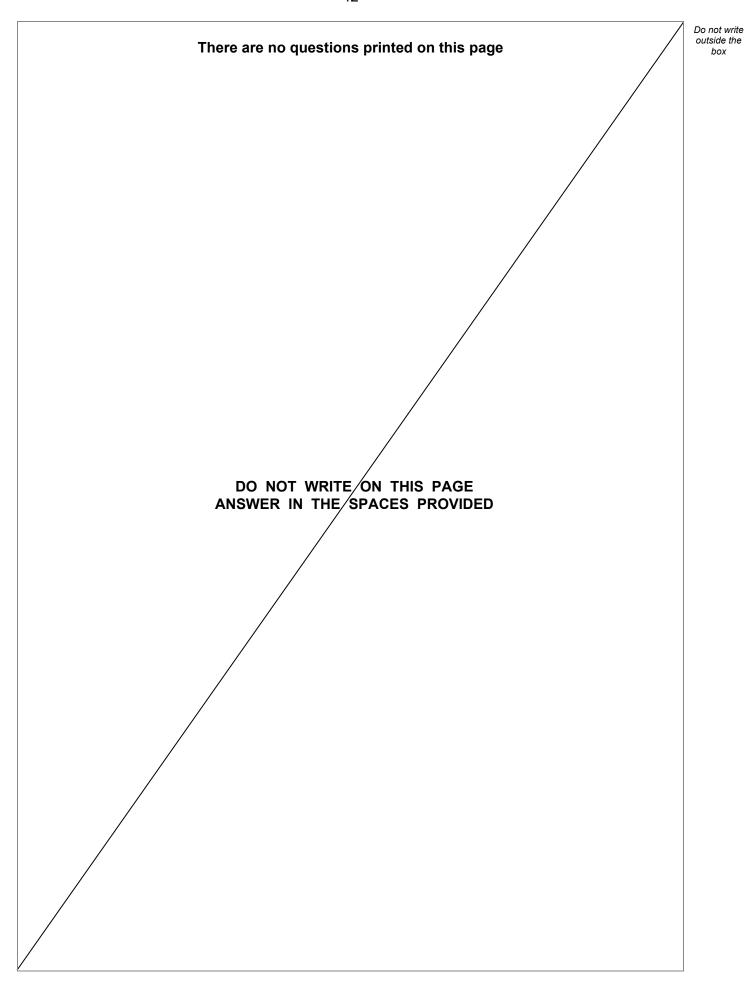


0 9. **4** Two students investigated the reflection of light by a plane mirror.

Figure 18 shows the different equipment the students used.

Explain two ways that Method A is better than Method B.

Figure 18


[4 marks]

2 _____

END OF QUESTIONS

16

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 AQA and its licensors. All rights reserved.

