

## **Physics Equations Sheet**

GCSE Physics (8463)

| 1  | pressure due to a column of liquid = height of column × density of liquid × gravitational field strength (g)                                                                                          | p = h ρ g                                                   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 2  | (final velocity) <sup>2</sup> – (initial velocity) <sup>2</sup> = $2 \times acceleration \times distance$                                                                                             | $v^2 - u^2 = 2 \ a \ s$                                     |
| 3  | force = change in momentum time taken                                                                                                                                                                 | $F = \frac{m  \Delta v}{\Delta t}$                          |
| 4  | elastic potential energy = $0.5 \times \text{spring constant} \times (\text{extension})^2$                                                                                                            | $E_e = \frac{1}{2} k e^2$                                   |
| 5  | change in thermal energy = mass $\times$ specific heat capacity $\times$ temperature change                                                                                                           | $\Delta E = m c \Delta \theta$                              |
| 6  | $period = \frac{1}{frequency}$                                                                                                                                                                        | $T = \frac{1}{f}$                                           |
| 7  | $magnification = \frac{image \ height}{object \ height}$                                                                                                                                              |                                                             |
| 8  | force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length                                                                              | F = B I !                                                   |
| 9  | thermal energy for a change of state = mass × specific latent heat                                                                                                                                    | E = m L                                                     |
| 10 | $\frac{\text{potential difference across primary coil}}{\text{potential difference across secondary coil}} = \frac{\text{number of turns in primary coil}}{\text{number of turns in secondary coil}}$ | $\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$ |
| 11 | potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil                                                           | $V_{\rm p} I_{\rm p} = V_{\rm s} I_{\rm s}$                 |
| 12 | For gases: pressure × volume = constant                                                                                                                                                               | p V = constant                                              |

Higher Tier only equations are in **bold**.