

Please write clearly in	า block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

GCSE CHEMISTRY

F

Foundation Tier Paper 1

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- · a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- · Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	ir

2 Do not write outside the 0 1 This question is about atoms. Figure 1 represents an atom of an element. Figure 1 В D Draw one line from each name to the correct label. [2 marks] Label Name Α Neutron В Proton C D

	Do not write
	outside the box
arks]	

0 1 . 2 An atom of element Y	has:
------------------------------	------

- an atomic number of 9
- a mass number of 19.

Give the number of electrons and the number of neutrons in this atom.

Choose answers from the box.

[2 m

1	9	10	19	28	

Number of electrons _____

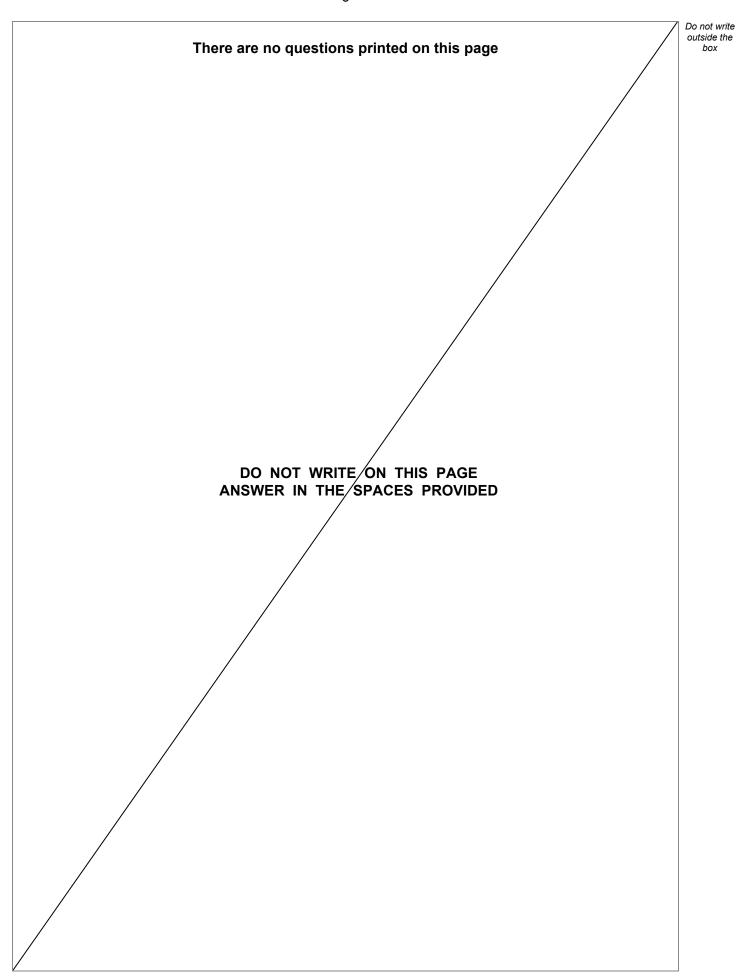
Number of neutrons _____

Question 1 continues on the next page

Table 1 shows information about two isotopes of element Z.

Table 1

	Mass number	Percentage abundance (%)
Isotope A	39	93.3
Isotope B	41	6.7


0 1.3	Calculate the relative atomic mass (A_r) of element Z .
	Use Table 1 and the equation:
$A_{\rm r} = \frac{(\rm max)^2}{2}$	ass number × percentage) of isotope A + (mass number × percentage) of isotope B
	100
	Give your answer to 3 significant figures.
	[3 marks]

A_r (3 significant figures) =

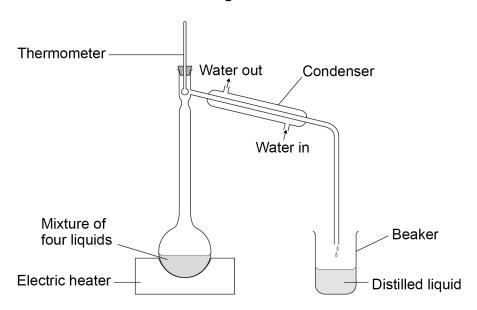
0 1.4	Suggest the identity of element Z . Use the periodic table.		[1 mark]	Do not write outside the box
0 1.5	Complete the sentence.			
	Choose the answer from the box.		[1 mark]	
	electrons	neutrons	protons	
	Isotopes of the same element have	different mass nu	mbers because the isotopes	9
	have different numbers of		_	9

Turn over for the next question

0 2	This question is about elements, compounds and mixtures.
0 2.1	Which type of substance is hydrogen? Tick (✓) one box. [1 mark]
	Element
	Compound
	Mixture
	The diagrams in Figure 2 represent different substances.
	Figure 2
Δ	B C D
	Use Figure 2 to answer questions 02.2 and 02.3.
0 2 . 2	Which diagram represents a mixture of compounds? [1 mark]
	A
0 2.3	Which diagram represents a mixture of elements? [1 mark]
	A B C D

Substances can be separated from mixtures by using different methods.

0 2 . 4 Complete the sentence.


[1 mark]

Sand can be separated from a mixture of sand and water by

A mixture of four liquids was fractionally distilled.

Figure 3 shows the apparatus used.

Figure 3

Table 2 shows the boiling points of the four liquids in the mixture.

Table 2

Liquid	Boiling point in °C
A	97
В	138
С	78
D	118

0 2.5	Which liquid in Table 2 would distil and be collected in the beaker first? [1 mark]	Do no outsi b
	Liquid	
0 2 . 6	Suggest what would happen to the temperature of the water as the water flows through the condenser. [1 mark]	
0 2 . 7	Describe how to obtain sodium chloride crystals from sodium chloride solution by crystallisation. [2 marks]	
		8
	Turn over for the next question	

0 3	This question is about acids.
	A student added four metals, A , B , C and D to hydrochloric acid.
	Figure 4 shows the rate of bubbling in each tube.
	Figure 4
	Hydrochloric acid A B C D
	Use Figure 4 to answer questions 03.1 and 03.2.
0 3.1	Which metal is copper? [1 mark]
	Tick (✓) one box.
	A B C D
0 3.2	Which metal is the most reactive?
	[1 mark] Tick (✓) one box.
	A
0 3.3	A metal oxide reacts with an acid to produce zinc sulfate and water.
	Name the metal oxide and the acid used in this reaction. [2 marks]
	Name of metal oxide
	Name of acid

0 3.4	Universal indicator is used to measure the	ne pH of a solution.
	Draw one line from each pH to the color that pH.	ur of universal indicator in a solution with
		[2 marks]
	рН	Colour of universal indicator
		Blue
	1	Green
		Purple
	7	Red
		Yellow
	Question 3 continues o	n the next page

	A student reacts an acid with an alkali in a titration.	Do not writ outside the box
0 3.5	What is the type of reaction when an acid reacts with an alkali?	1.3
	Tick (✓) one box.	K]
	Combustion	
	Decomposition	
	Neutralisation	
0 3.6	Figure 5 shows a piece of equipment used to measure the volume of the acid in the titration.	
	Figure 5	
	What is the name of this piece of equipment?	k1
	Tick (✓) one box.	^]
	Burette	
	Pipette	
	Syringe	
	Tube	8

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

0 4 This question is about the periodic table.

Figure 6 shows an early version of the periodic table published by a scientist.

Figure 6

	Н																	
	Li	Е	3e		В			С			N		C)		F		
	Na	N	⁄lg		Al			Si			Р		5	3		Cl		
K	Cu	Са	Zn	?		?	Ti		?	V	As		Cr	Se	Mn		Br	Fe Co Ni
Rb	Ag	Sr	Cd	Υ		ln	Zr	S	3n	Nb	SI	5	Мо	Те	?		ı	Ru Rh Pd

0 4 . 1	The scientist left gaps in the p	periodic table in Figure 6 .	
	Each gap is represented by a	question mark (?).	
	Give one reason why the scie	entist left gaps in this periodic table.	[1 mark]
0 4.2	Which scientist published the Tick (✓) one box.		[1 mark]
	Bohr		
	Chadwick		
	Mendeleev		

0 4.3	The modern periodic table is different from the periodic table in Figure 6 .	Do not write outside the box						
	One extra group of elements has been added.							
What is the name of the extra group of elements in the modern periodic table? [1 ma Tick (✓) one box								
	Tick (✓) one box. Alkali metals							
	Halogens							
	Noble gases							
0 4.4	Why do the elements in Group 1 of the modern periodic table have similar chemical properties?							
	[1 mark] Tick (✓) one box.							
	The elements all form negative ions.							
	The elements all have one electron in the outer shell.							
	The elements all have the same number of shells.							
	Question 4 continues on the next page							

0 4.5 Table 3 shows the melting points of the first five elements going down Group 1.

Table 3

Element	Melting point in °C
Lithium	181
Sodium	98
Potassium	x
Rubidium	39
Caesium	29

Predict value >

[1 mark]

X	=	°C

0 4 . 6	Give one observation you would see when a small piece of potassium is adde to water.						
		[1 mark]					

0	4	. 7	Table 4 shows information about the first five elements going down Group 7.
	_	-	

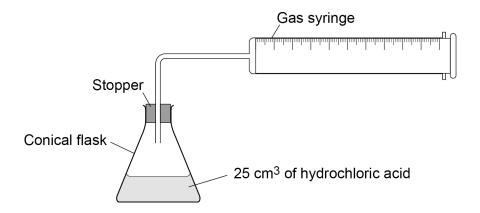
Table 4

Element	State at 150 °C	Symbol	Formula of the compound with hydrogen
Fluorine	gas	F	HF
Chlorine		Cl	HCl
Bromine	gas	Br	HBr
lodine	liquid	I	HI
Astatine	solid	At	

	Complete Table 4 .	[2 marks]	
0 4.8	The elements in Group 7 What is the formula of a Tick (✓) one box.	[1 mark]	
	Br Br ₂		
	Br ² 2Br		

Turn over ▶

9



0 5

A student investigated the reaction of magnesium with hydrochloric acid.

Figure 7 shows the apparatus used.

Figure 7

This is the method used.

- 1. Set up the apparatus as shown in **Figure 7**.
- 2. Cut 10 mm of magnesium ribbon.
- 3. Remove the stopper.
- 4. Add the magnesium ribbon to the conical flask.
- 5. Replace the stopper as quickly as possible.
- 6. Record the final reading on the gas syringe when the reaction has stopped.
- 7. Repeat steps 1 to 6 three more times.
- 8. Repeat steps 1 to 7 with different lengths of magnesium ribbon.

0 5 . 1	Which gas is produced when magnesium reacts with hydrochloric acid? Tick (✓) one box. Carbon dioxide Chlorine Hydrogen Oxygen	[1 mark]	Do not write outside the box
0 5.2	What was the independent variable in the investigation?	[1 mark]	
0 5.3	Give one control variable in the investigation.	[1 mark]	
	Question 5 continues on the next page		

Table 5 shows the results for one length of magnesium ribbon.

Table 5

	Trial 1	Trial 2	Trial 3	Trial 4
Volume of gas produced in cm ³	19	36	37	32

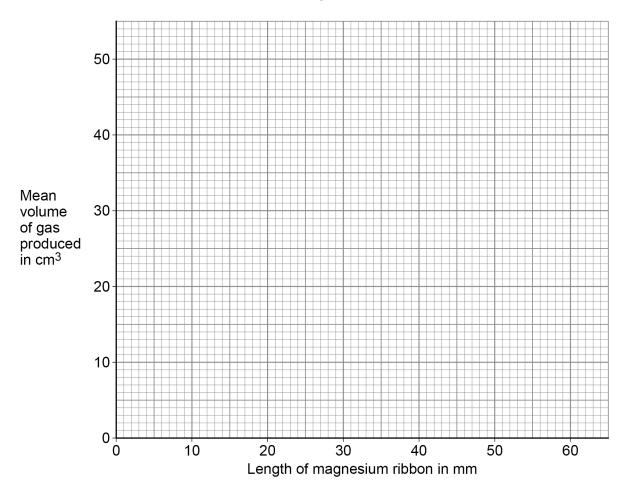
One of the results was anomalous.

0 5 . 4	Which trial in Table 5 gave an anomalous result?	[1 mark]
	Trial ₋	
0 5 . 5	Suggest one reason for the anomalous result in Table 5 .	[1 mark]

0 5 . 6

Table 6 shows the mean volume of gas produced for each length of magnesium ribbon.

Table 6


Length of magnesium ribbon in mm	10	20	30	40	50	60
Mean volume of gas produced in cm ³	7	14	21	28	35	42

Plot the data from Table 6 on Figure 8.

Draw a line of best fit.

[3 marks]

Figure 8

0 5 . 7 Complete the sentence.

[1 mark]

As the length of the magnesium ribbon increases, the mean volume of gas produced

9

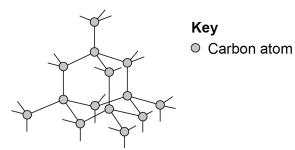


Figure 10 represents the structure of diamond.

Figure 10

0 6. 3 How many covalent bonds does each carbon atom form in diamond?

[1 mark]

0	6		4	Which is a	property of o	diamond?
---	---	--	---	------------	---------------	----------

[1 mark]

Tick	(✓)	one	box.

Conducts electricity	

Low melting point

Very hard

Question 6 continues on the next page

0 6.5	Figure 11 shows a model of a molecule.	1
	Figure 11	
	Carbon Hydrogen	
	Complete the molecular formula of the molecule.	
	Molecular formula = C H [1 mark]	
	Carbonic acid is a compound of carbon.	
	The formula of carbonic acid is H ₂ CO ₃	
0 6.6	Which ion is produced by carbonic acid in aqueous solution?	
0 6.7	Calculate the relative formula mass (M_r) of carbonic acid (H_2CO_3). Relative atomic masses (A_r): $H = 1$ $C = 12$ $O = 16$	
	[2 marks]	
	Relative formula mass (<i>M</i> _r) =	

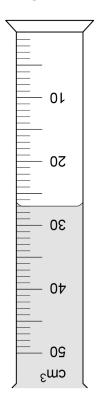
0 7	This question is about small particles.	Do not wr outside th box
0 7.1	Coarse particles, fine particles and nanoparticles are all small particles.	
	Which is the largest particle?	
	Tick (✓) one box. [1 mark]	
	Coarse particle	
	Fine particle	
	Nanoparticle	
0 7.2	Figure 12 shows a cubic nanoparticle.	
	Figure 12	
	2 nm 2 nm 2 nm	
	The surface area of the cubic nanoparticle is 24 nm ² .	
	Calculate:	
	the volume of the cubic nanoparticle	
	• the simplest surface area : volume ratio of the cubic nanoparticle. [4 marks]	
	Volume =nm ³	
	Simplest surface area : volume ratio =	

0 7.3	Catalysts made of nanoparticles are often more effective than catalysts made of normal sized particles.
	Complete the sentences. [2 marks]
	Compared with normal sized particles, the surface area to volume ratio of
	nanoparticles is
	This means that the mass of a nanoparticle catalyst needed to have the same effect
	as the same catalyst made of normal sized particles is
0 7.4	Silver nanoparticles can be added to the material used to make socks.
	Some facts about silver and bacteria are:
	silver nanoparticles are small enough to be breathed in
	silver is very expensive
	silver can kill bacteria
	bacteria can cause infections
	bacteria can break down sweat to produce unpleasant smells.
	Suggest one advantage and one disadvantage of wearing socks containing silver nanoparticles. [2 marks]
	Advantage
	Disadvantage

0 7.5	An atom has a radius of 1 × 10 ⁻¹⁰ m.	Do not write outside the box	
	A spherical nanoparticle has a radius of 1 × 10 ⁻⁸ m.		
	How many times larger is the radius of the nanoparticle than the radius of the atom? [1 mark] Tick (✓) one box.		
	2 times		
	10 times		
	100 times		
	200 times	10	
	Turn over for the next question		

Turn over ▶

28 0 8 This question is about electrolysis. Ionic compounds decompose when they are electrolysed. A student electrolyses sodium sulfate solution. Figure 13 shows the apparatus used. Figure 13 Hydrogen Oxygen Measuring cylinders Sodium sulfate Electrodes solution Power supply 0 8 . 1 Sodium sulfate solution contains: · hydrogen ions hydroxide ions sodium ions · sulfate ions. Oxygen is produced at the positive electrode. Which ions are discharged at the positive electrode to produce oxygen? [1 mark] Tick (✓) one box. Hydrogen ions Hydroxide ions Sodium ions



Sulfate ions

Do not write outside the

0 8.2 Figure 14 shows one of the measuring cylinders during the electrolysis.

Figure 14

What is the volume of gas in the measuring cylinder?

[1 mark]

Volume of gas = ____cm³

0 8. Ionic compounds can be electrolysed when molten or dissolved in water.

Why can ionic compounds **not** be electrolysed when solid?

You should answer in terms of ions.

[1 mark]

0	0 8. 4 Table 7 shows the products of electrolysis of two molten compounds.					
			Table 7			
Molten compound			Product at negative electrode	Product at positive electrode		
	Potassium iodide		Potassium			
Zinc bromide				Bromine		
Complete T a		Complete Ta	ible 7.	[2 marks]		
0	8 . 5	The electroly	rsis of molten sodium chloride is us	sed to extract sodium metal.		
		Why is sodiu	m metal extracted by electrolysis i	nstead of by reduction with carbon? [1 mark]		
		Tick (✓) one	box.	[1 mark]		
		Carbon cond	lucts electricity.			
		Carbon is les	ss reactive than sodium.			
		Carbon redu	ction uses more energy.			
0	8 . 6	What is the s Tick (✓) one (aq)	state symbol for molten sodium chl box. (g) (l)	oride? [1 mark] (s)		

Do not write outside the box

0 6 . 7 I Itanium can be produced from titanium oxide by electrolysi	0	8 .	7	Titanium can be produced from titanium oxide by electrolysi
--	---	-----	---	---

The equation for the reaction is:

$$TiO_2\!\to Ti + O_2$$

Calculate the percentage atom economy for the production of titanium from titanium oxide by electrolysis.

Use the equation:

Percentage atom economy =
$$\frac{\text{Relative atomic mass of desired product}}{\text{Relative formula mass of reactant}} \times 100$$

Relative atomic mass (A_r) : Ti = 48

Relative formula mass (
$$M_r$$
): TiO₂ = 80

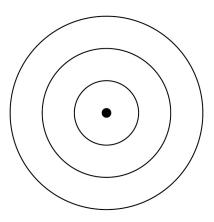
[2 marks]

Percentage atom economy = ______ %

9

Turn over for the next question

0 9	This quest	on is about meta	ls and non-m	etals.		
	Figure 15	shows an outline	of part of the	periodic table.		
			Figure 15	;		
0 9.1	Element Q	is a dull solid wit	t electricity.		D	
		tion of the periodi	c table in Fig	ure 15 is most	likely to conta	ain element Q ? [1 mark]
	Tick (✓) oı	ne box.				
	Α	В		С	D	
0 9.2	Element R	forms ions of form	mula R ²+ and	R ³⁺		
	Which sec	tion of the periodi	c table in Fig	ure 15 is most	likely to conta	ain element R ? [1 mark]
	Tick (✓) or	ne box.				
	A	В		С	D	
0 9.3		lifferences between transition eleme		al properties o	f the elements	in Group 1 and [2 marks]
	1					
	2					



0	9	. 4	Complete Figure 16 to show the electronic structure of an aluminium atom.

Use the periodic table.

[1 mark]

Figure 16

0 9 .	5	Aluminium i	is a	metal.
-------	---	-------------	------	--------

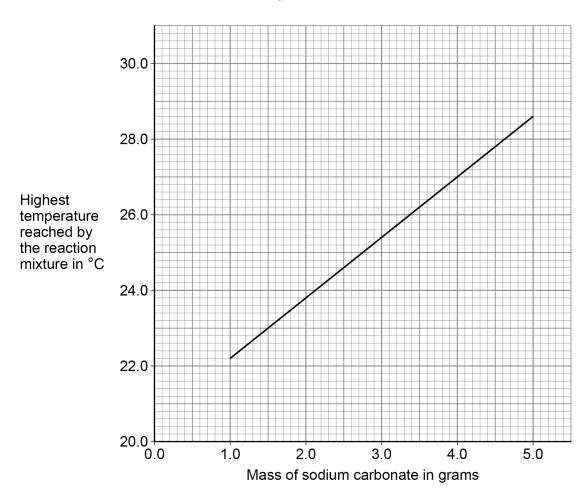
Describe how metals conduct electricity.

Answer in terms of electrons.

[3	marks]

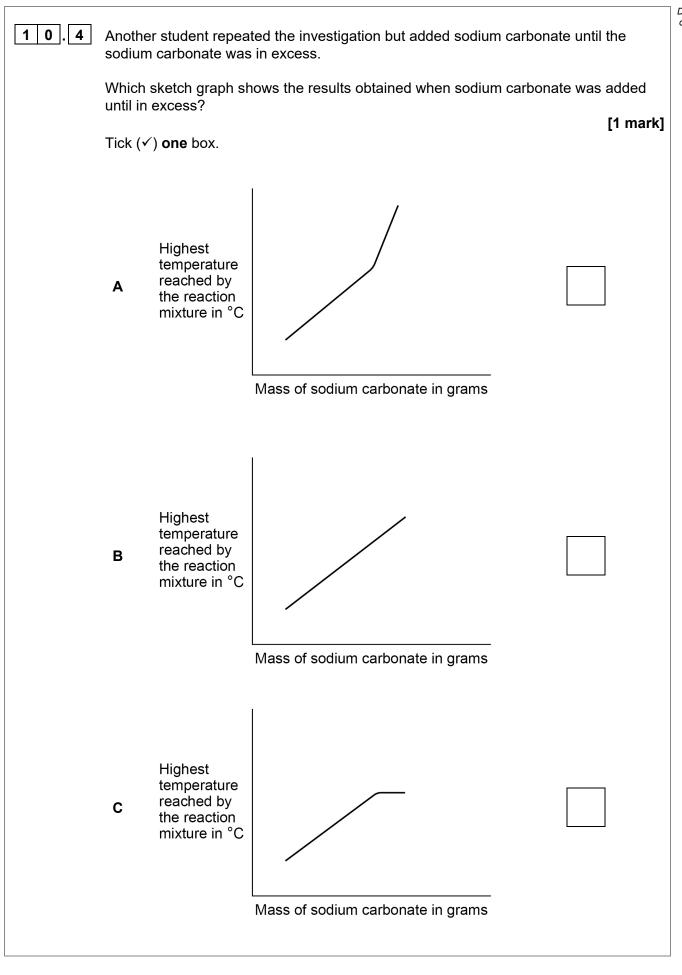
0 9 . 6	Name the type of bonding in compounds formed between metals and non-metals.
	[1 mark]

0 9.7	Magnesium oxide is a compound formed from the metal magnesium and the non-metal oxygen.	Do not write outside the box
	Describe what happens when a magnesium atom reacts with an oxygen atom.	
	You should refer to electrons in your answer. [4 marks]	
		13



1 0	Sodium carbonate reacts with hydrochloric acid in an exothermic reaction.
	The equation for the reaction is:
	$Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$
	A student investigated the effect of changing the mass of sodium carbonate powder on the highest temperature reached by the reaction mixture.
10.1	Plan a method to investigate the effect of changing the mass of sodium carbonate powder on the highest temperature reached. [6 marks]

Figure 17 shows a line of best fit drawn through the student's results.



1 0 . 2	Determine the gradient of the line of best fit in Figure 17 .
	Use the equation:
	Gradient = Change in highest temperature Change in mass
	Give the unit.
	[5 marks]
	Gradient = Unit
1 0 . 3	The initial temperature of the reaction mixture is where the line of best fit would meet the <i>y</i> -axis.
	Determine the initial temperature of the reaction mixture.
	Show your working on Figure 17 .
	[2 marks]
	Initial temperature of the reaction mixture = °C
	milital temperature of the redotton mixture –

3 7

Turn over ▶

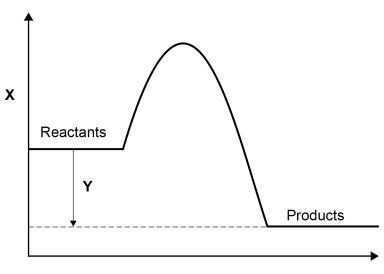

Do not write outside the box

Figure 18 shows a reaction profile for the reaction of sodium carbonate with hydrochloric acid.

Figure 18

Progress of reaction

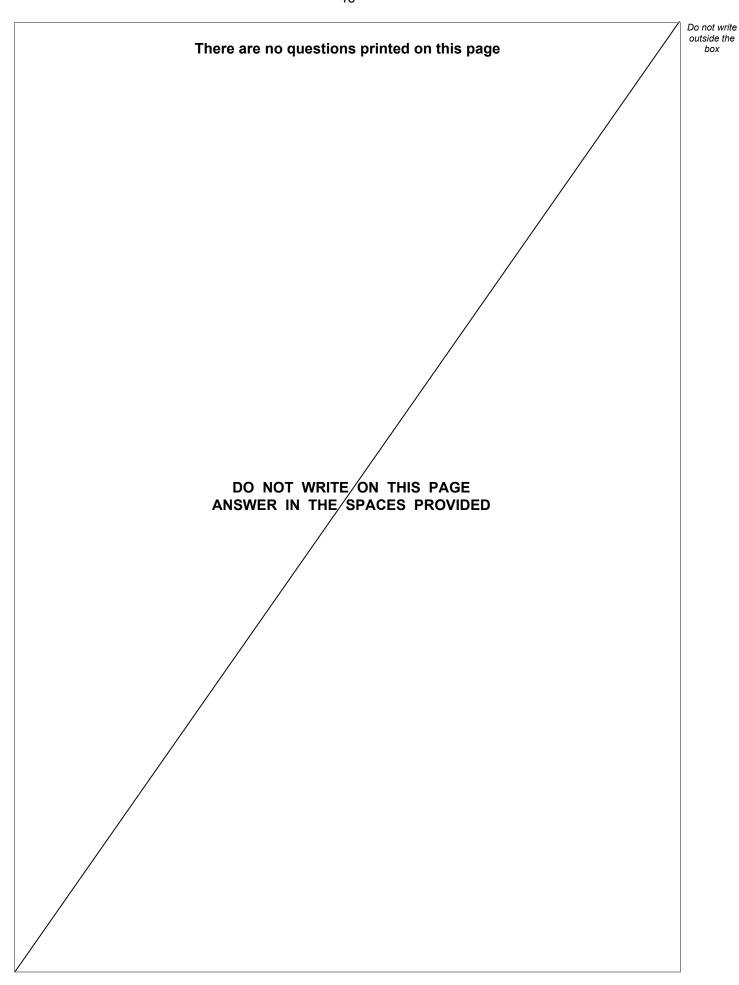
1	0	. 5	What do labels X and Y represent on Figu	re 18?
---	---	-----	---	--------

[2 marks]

X			

Υ_____

1 0. 6 How does the reaction profile show that the reaction is exothermic?


Use Figure 18.

[1 mark]

17

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Do not write outside the There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

