School:

Sixth Form Entrance Examination

November 2020

Chemistry

Time allowed: 1 hour

This paper is divided into two sections, both of which must be attempted. You **must** write your name on the front of this booklet.

> Section A: multiple choice (30 marks) Section B: short answer questions (30 marks)

A Data Sheet and a Periodic Table are provided (inside front cover and first page)

Equipment Required: Pen, pencil, ruler and calculator

Section A	/30
Section B	/30
Total	/ 60

For examiner's use only:

				······································			
0	^H elium 2	20 Neon 10	40 Ar 18	84 Krypton 36	131 Xenon 54	222 Radon 86	
7		19 Fluorine 9	35.5 CI Chlorine 17	80 Br 35	127 Iodine 53	210 At Astatine 85	
9		16 Oxygen 8	32 Sulphur 16	79 Selenium 34	128 Te 52	210 Polonium 84	
£		14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83	
4		5 Carbon Carbon	28 Silicon 14	73 Germanium 32	55 <mark>2</mark> 1 23	207 Pb 82	
n		5 Bog 3	27 Aluminium 13	70 Gallium 31	115 Indium 49	204 Th B11um 81	
		L		65 Zn 30 30	112 Cd dmium 48	201 Hg Mercury 80	
				63.5 Copper 29	108 Ag Silver	197 Au Gold 79	
				28 Nickel 28 Nickel	106 Pd Palladium 46	195 Pt 78	
				59 Cobalt 27	103 Rhodium 45	192 Ir 77	
				8 <u>9 6</u> 8	101 Ruthenium 44	190 Osmium 76	
Group	+ Hydrogen			55 Mr Manganese 25	99 Tc 43	186 Re Rhenium 75	
				52 Chromium 24	96 Mo Molybdenum 42	184 W 74	
				51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73	
				48 Titanium 22	91 Zrconium 40	179 Hafnium 72	
				45 Scandium 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89
N		9 Beryllium	24 Mg 12	20 A0 Calcium 20	88 Strontium 38	137 Barium 56	226 Radium 88
-		Lithium ~ ~	23 Sodium 11	39 Potassium 19	86 Rubidium 37	133 CS Caesium 55	223 Fr Francium 87
Period	-	N	ო	4	5	9	~

Key Relative atomic mass Symbol Name Atomic number

THE PERIODIC TABLE

Chemistry Data Sheet

(elements in italics, though non-metals, have been included for comparison)

2. Formulae of Some Common lons	Positive ions		Negative ion	s
	Name	Formula	Name	Formula
	Hydrogen	H⁺	Chloride	CI ⁻
	Sodium	Na⁺	Bromide	Br⁻
	Silver	Ag⁺	Fluoride	F ⁻
	Potassium	K⁺	lodide	1-
	Lithium	Li ⁺	Hydroxide	OH ⁻
	Ammonium	NH_4^+	Nitrate	NO_3^-
	Barium	Ba ²⁺	Oxide	O ^{2–}
	Calcium	Ca ²⁺	Sulfide	S ²⁻
	Copper(II)	Cu ²⁺	Sulfate	SO4 2-
	Magnesium	Mg ²⁺	Carbonate	CO32-
	Zinc	Zn ²⁺		
	Lead	Pb ²⁺		
	Iron(II)	Fe ²⁺		
	Iron(III)	Fe ³⁺		
	Aluminium	AI 3+		

[BLANK PAGE]

Section A

You should complete this section using the answer grid provided.

- 1 Below are some statements regarding the smokeless fuels *Burnbrite* and *Hiheat*. Which of these statements **cannot** be checked scientifically?
 - A *Burnbrite* produces less ash than *Hiheat*
 - B Hiheat is a better solid fuel than Burnbrite
 - C 1 kg of *Burnbrite* produces more heat when it is burned than 1 kg of *Hiheat*
 - D Burnbrite produces more sulfur dioxide than Hiheat
- 2 When a geologist tested a sample of copper ore with dilute hydrochloric acid, a gas was given off. This suggests the ore could contain...
 - A CuCO₃
 - B CuCl₂
 - C CuSO₄
 - D Cu(OH)₂
- **3** A metal atom X has the electron arrangement 2,8,3 and a non-metal atom Y has the electron arrangement 2,8,6. What is the correct formula for the compound formed between elements X and Y?
 - $A \quad X_2 Y$
 - B XY
 - C XY₂
 - $\mathsf{D} \quad \mathsf{X}_2\mathsf{Y}_3$
- 4 Hydrochloric acid reacts with iron (II) sulfide to produce hydrogen sulfide gas. Under which of the following sets of conditions would the reaction start at the **slowest** rate?

	Concentration of acid (mol/dm ³)	Temperature (°C)	State of iron (II) sulfide	
A	1.0	15	Powdered	
В	0.1	30	Powdered	
С	0.1	15	Lumps	
D	2.0	30	Lumps	

- 5 What group number of the periodic table are the Alkaline Earth Metals in?
 - A 2
 - B 0
 - C 1
 - D 7
- 6 Which of the following is the correct formula for niobium (V) oxide
 - A Nb₅O
 - B NbO₅
 - C Nb₅O₂
 - D Nb₂O₅
- 7 Many chemical reactions produce energy because...
 - A the reactants must be heated for the reaction to begin
 - B bonds have broken during the reaction
 - C the products have weaker bonds than the reactants
 - D the energy content of the products is less than that of the reactants
- 8 Magnesium is more reactive than zinc. This means that...
 - A zinc will displace magnesium from a solution of magnesium sulfate
 - B zinc will corrode in preference to magnesium
 - C magnesium displaces chlorine from potassium chloride (aq), but zinc will not
 - D magnesium forms ions more readily than zinc
- **9** Which one of the following contains the greatest percentage by mass of potassium?

(relative atomic masses: H = 1, C = 12, O = 16, K = 39)

- A KOH
- B KHCO₃
- C K₂CO₃
- $D K_2C_2O_4$

10 This question refers to the two particles **X** and **Y**. The table shows some data for X and Y.

	Particle X	Particle Y
Number of protons	26	26
Number of neutrons	30	31
Number of electrons	24	23

Particles X and Y are...

- A atoms of the same element
- B atoms of different elements
- C ions of the same element
- D ions of different elements
- **11** Sodium chloride is...
 - A an element
 - B a molecule
 - C a compound of two non-metals
 - D a compound of a metal and a non-metal
- 12 Which of the following gases is not considered to be a cause of air pollution?
 - A sulfur dioxide
 - B nitrogen dioxide
 - C carbon monoxide
 - D carbon dioxide

13 The diagram of a chromatogram shows the dyes present in an ink. Spots of red, yellow and blue dyes were used as well as the ink.

The ink contained...

- A blue and yellow dyes.
- B red dye only.
- C red and yellow dyes.
- D yellow, red and blue dyes.
- **14** Indigestion is caused by the presence of an excess of acid in the stomach. Which of the following substances could an indigestion tablet contain to neutralise this acid?
 - A magnesium hydroxide
 - B sugar
 - C sodium chloride
 - D lemon juice
- **15** Which of the following is a single compound?
 - A air
 - B seawater
 - C limestone
 - D chocolate

16 The table below shows the melting points of the elements in Group 1. The melting point of rubidium is missing.

Element	Li	Na	K	Rb	Cs
Melting Point (°C)	180	98	64		29

The most likely melting point of rubidium is...

- A 31 °C
- B 55 °C
- C 39 °C
- D 115 °C
- **17** Newly laid bricks sometimes become coated with an alkaline white deposit. The best way to remove this deposit is to wash it with a mixture of detergent and a chemical that will react with the white deposit.

Which one of the following could be used with the detergent in the mixture?

- A vinegar
- B limewater
- C sodium hydroxide solution
- D ethanol
- **18** Methanoic acid (a weak acid) is present in many kettle/steam iron descalers. What pH would you expect a solution of methanoic acid to have?
 - A 1
 - B 13
 - C 7
 - D 5
- **19** Pollution of the environment is reduced by...
 - A burning coal in power stations
 - B adding fertilisers to the soil
 - C replacing metal items with plastic items
 - D using a catalytic converter on a car exhaust

- **20** Which change of state occurs when dry ice (solid carbon dioxide) is heated and converted into a gas for stage effects?
 - A condensation
 - B sublimation
 - C evaporation
 - D solidification
- 21 Which of the following compounds contains the largest number of atoms?
 - A aluminium oxide
 - B ammonium sulfate
 - C calcium nitrate

 $\begin{array}{l} Al_2O_3\\ (NH_4)_2SO_4\\ Ca(NO_3)_2\\ CuSO_4.5H_2O \end{array}$

- D hydrated copper(II) sulfate crystals
- 22 The metal most commonly used for a drink can is...
 - A aluminium
 - B iron
 - C tin
 - D copper
- 23 Carbon dioxide is a gas which...
 - A is insoluble in water
 - B makes up 0.93% of earth's atmosphere
 - C burns in air
 - D is more dense than air

24 2.0 g of magnesium metal were reacted with an excess of dilute sulphuric acid. The volume of gas given off was measured at one minute intervals. The results of this experiment are shown in the table below:

Time (min)	0	1	2	3	4	5	6	7	8	9	10
Volume (cm ³)	0	16	25	35	40	44	47	49	50	50	50

The time needed for 1.0 g of magnesium to react was

- A 1 minutes
- B 2 minutes
- C 4 minutes
- D 8 minutes
- **25** A sample of sodium chloride has become contaminated with dust. What sequence of operations is the best way to obtain pure sodium chloride?
 - A solution, crystallisation, filtration
 - B decantation, solution, precipitation
 - C solution, filtration, crystallisation
 - D solution, filtration, evaporation

Questions 26 – 30, choose from the list A to D

- A Water (H₂O)
- B Hydrogen chloride (HCl)
- C Sodium chloride (NaCl)
- D Diamond (C)
- 26 The substance that has a giant covalent structure
- 27 The substance that consists of ions in a giant structure
- **28** The substance which boils at -85 ^oC
- 29 The substance that forms dense white fumes with ammonia gas
- **30** The substance that contains no covalent bonds

Total marks (30)

[END OF SECTION A]

Section B

1 Complete the following table for the atoms shown

Element	Symbol	Atomic Number	Mass Number	Protons	Neutrons	Electrons
Sodium			23			
		13	27			
				9	10	
	K		39			

(2)

2 Copy and complete the following table for the ions shown

lon	Symbol	Atomic Number	Mass Number	Protons	Neutrons	Electrons
				3	4	2
	O ²⁻		16			
Magnesium		12				
		15	31			18

(2)

3 A company which produces sweets was introducing a new product called "Moon Dust". This sweet was in the form of a powder, which fizzed in water. The fizziness was investigated before it was put on the market.

Three different experiments were	carried out.
----------------------------------	--------------

Experiment	Mass of powder added to 1 litre of water	Temperature (°C)
1	40	25
2	40	37
3	20	25

For each experiment, a graph was plotted of the volume of gas produced against time. The graph for experiment 1 is shown below.

On the graph above, sketch the plots for experiments 2 and 3 on to it. Label each curve clearly.

(2)

4 In 1926 the plastic *Polysynth* was invented and immediately used in household furniture. The material was found to generate poisonous fumes when burnt. The fire services kept the following statistics.

Year	<i>Polysynth</i> used in household furniture (tons)	Household fire deaths
1910	0	10
1920	0	10
1930	1000	12
1940	4000	18
1950	7000	24
1960	10000	30
1970	10000	30
1980	0	10

a) Use the graph paper below to plot a bar chart of household deaths against year.

The grid below is 32 squares wide and 30 squares high. Spare graph paper is provided on the back page.

(3)

b) Describe the relationship between the quantity of plastic used and the number of household fire deaths from fumes?

(1)

c) What evidence is there in the statistics that not all fire deaths were due to *Polysynth*?

(1)

5 The corrosion of iron was investigated by giving six identical iron nails different treatments. A seventh nail was left untreated. All seven nails were then left exposed to the atmosphere for several days.

Nail	Treatment	Cost of treatment	Initial mass of nail (g)	Final mass of nail (g)
А	waxed	low	5.0	5.3
В	oiled	low	5.0	4.1
С	chromium plated	high	5.0	5.0
D	painted	low	5.0	5.4
E	galvanised	high	5.0	5.1
F	salted	low	5.0	6.7
G	untreated	nil	5.0	6.1

The results of the experiment are given below.

a) What happens to the mass of a nail when it corrodes?

- b) Which nail was weighed incorrectly after exposure to the atmosphere? (1)
- c) Which nail was best protected against corrosion?

(1)

d) Which nail received a treatment which made corrosion much worse?

(1)

a) Complete the following table. Use the words *solid*, *liquid* or *gas*.

Element	Melting point (°C)	Boiling point (°C)	Physical State at 25 °C
Iron	1535	2750	
Fluorine	-220	-188	
Mercury	-39	357	
lodine	114	184	
Nitrogen	-210	-196	
Sodium	98	883	
Bromine	-7	59	
Xenon	-112	-107	

(2)

(1)

c) What is the name given to the elements in group 1?

d) What is the name given to the elements in group 7?

(1)

 Explain why elements in the same group exhibit similar chemical properties.

(1)

7 Complete the following table. Use the words *metallic*, *ionic* or *covalent*.

Substance	Melting point (°C)	Boiling point (°C)	Type of bonding
Nitrogen	-210	-196	
Sodium	98	883	
Sulfur dioxide	-73	-10	
Water	0	100	
Ethane	-183	-88	
Magnesium chloride	712	1418	

(3)

8 Using the table below to answer the following questions.

Ionic Compound	Colour
Potassium chromate	Yellow
Sodium chloride	White
Nickel (II) sulfate	Green
Sodium chromate	Yellow
Copper (II) chloride	Blue
Potassium chloride	White
Potassium permanganate	Purple
Nickel (II) chloride	Green

a)	Deduce the colour of the nickel (II) ion?	(1)
b)	Deduce the colour of the permanganate ion?	(1)
c)	Deduce the colour of the copper (II) ion?	(1)
d)	Deduce the colour of the chromate ion?	(1)
e)	What colour would you expect copper (II) chromate to be?	(1)

9 Use the diagrams below to answer parts 'a)' and 'b)'.

- a) Identify the two elements
- **b)** Identify the mixture

(2)

Total marks (30)

[END OF SECTION B] [END OF PAPER]

Spare graph paper for question 4 a)

